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1. Introduction 

Thalassaemia is a broad group of autosomal 

recessive genetic diseases. In 2021, the worldwide 

number of thalassaemia cases was 1,310,407. The 
number of deaths remained at 11,087, with an age-

standardized mortality rates (ASMR) of 0.15 per 

100,000 persons [1] . It inhibits the synthesis of a 

single or more haemoglobin globin chains and is the 

most widespread monogenic disorder in the world 

with an estimated population of 1-5 percent of the 

world population having a hereditary thalassaemia 

mutation [2]. The disease is specifically prevalent in 

areas of Africa, Middle East, Mediterranean region 

and Southeast as well as South Asia. Migration has, 

however, made it widespread in North America and 

Northern Europe. This expanding global distribution 

has created significant inequities in access to 
screening, diagnostic, and management services, 

while simultaneously placing new pressures on 

already strained healthcare systems. [3]. 

Thalassaemia is caused by mutation which affects 

production of globin chain. It leads to the imbalanced 

production of the α and β globin chains resulting in 

chronic anaemia and poor erythropoiesis (red blood 

cell breakdown). More than 200 different mutations 

have been identified in the 11HBB globin gene on 
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Abstract 
 
Thalassaemia is a serious genetic disorder that causes severe anaemia, 
resulting in serious health and economic problems on the entire globe, 
particularly in areas with restricted access to health care. Thalassaemia and 
iron deficiency anaemia (IDA) are clinically similar because of overlapping 
haematological characteristics. Conventional diagnostic tools comprising of 
molecular test, conventional index and complete blood count (CBC) 
parameters may provide pertinent information but are not always available, 

are not affordable and take a long turnaround time. Over the last few decades, 
the field of medicine diagnostics has encountered a disruptive technology in 
the form of Artificial Intelligence (AI) since it is both cheap and quick and 
incredibly precise in treatment. The AI like Decision Tree, Support Vector 
Machine, and Neural Networks can be able to determine the traits of 
thalassaemia using the normal haematological data. Additional methods 
proven to be more credible in diagnosis, like deep learning and sophisticated 
algorithms, XGBoost and Convolutional Neural Networks (CNN) can be 

further tested to introduce additional diagnostic reliability. It has also been 
found in comparative studies that AI-based models tend to be more sensitive 
and specific than standard indices, that’s why these technologies are currently 
being utilized as genetic counseling and screening tools. Despite the problems 
of data quality, bias of the model, and considerations of ethics, AI can serve 
as an important supportive resource in the early diagnosis, accurate 
differentiation, and better management of thalassaemia in low resource 
healthcare facilities. The combination of AI and molecular testing is 

promising for global thalassaemia control and personalized medication. The 
review provides a unique, clinically oriented, synthesis of AI-based 
thalassaemia diagnostics through the combination of performance 
comparison, methodological criticism, and an implementation framework 
suggested in low-resource healthcare environments. 
Keywords: Thalassaemia, iron deficiency anaemia, artificial intelligence, 
machine learning, β globin chain 
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chromosome 11. Most of these point mutations 

involve alteration of a single nucleotide. The clinical 

manifestations may vary tremendously in patients 

with high-risk transfusion-dependent anaemia up to 

an asymptomatic carrier state, depending on the type 

and the extent of genetic defect. 

The two primary forms of thalassaemia include α-

thalassaemia and β-thalassaemia resulting from 

insufficient or minimal production of alpha and beta-

globin chains, respectively. It requires lifelong 

transfusion therapy and presents ranging from 

moderate hypochromic microcytosis to severe 
anaemia. Untreated cases of β-Thalassaemia major, 

the most serious condition typically diagnosed in 

childhood, may result in growth retardation, skeletal 

defects, and organ dysfunction caused by iron 

overload and chronic hypoxia. Resulting from 

development of iron chelation therapy and regular 

transfusion programs, thalassaemia major no longer 

presents an fatal childhood disease but a manageable 

chronic disease [4]. 

However, patients are susceptible to liver disease, 

osteoporosis, endocrine disorders, and heart failure. 
Gene therapy emerged as a promising field of 

therapy, while treatment regimens including 

allogeneic hematopoietic stem cell transplantation 

(HSCT) are applied in specific patients. 

Prevention still remains the best course of action 

despite these medical advancements. Prenatal 

diagnosis, carrier identification, and premarital 

screening are essential for reducing prevalence of the 

disease [5]. However, there are insufficient screening 

and molecular diagnostic facilities in many highly 

affected areas. 

Thalassaemia diagnosis is done using a combination 
of haematological, biochemical, and molecular 

testing. The initial screening step mostly involves a 

Complete Blood Count (CBC). Thalassaemia carriers 

have small, pale red blood cells with reduced 

haemoglobin content. This is reflected by low Mean 

Corpuscular Volume (MCV) values of approximately 

60–70 fL and low Mean Corpuscular Haemoglobin 

(MCH) values of around 19–23 pg. Quantitative 

analysis of  haemoglobin fractions is possible by 

performing haemoglobin electrophoresis and High-

Performance Liquid Chromatography (HPLC) [6]. 

High HbF and HbA2 are used to identify β-

thalassaemia carriers. As the two conditions present 

with small and pale red blood cells, serum ferritin 

testing helps in the exclusion of iron deficiency 

anaemia (IDA), which is a major differential 

diagnosis. Molecular confirmation is achieved by 

PCR based testing, such as ARMS-PCR, allele-

specific PCR, and sequencing to identify harmful 

mutations.Molecular testing is considered the gold 

standard, but it is expensive, time-consuming, and is 

often not available in areas with limited resources [7]. 

This causes a treatment dilemma as although the two 

conditions have similar blood profiles, there is a 

significant difference in the treatment of IDA and 

thalassaemia. Misdiagnosis may lead to the 

probability of severe illness in children because a 

carrier may get unnecessary iron treatment or miss 

out the treatment of  thalassaemia. Over the past 

years, medical diagnosis has been transformed by AI, 
which is able to learn and identify hidden patterns 

using big data [8]. In the field of haemotology, AI can 

distinguish thalassaemia and iron deficiency anaemia 

by analyzing routine CBC data without necessarily 

using special molecular analysis. Artificial Neural 

Networks (ANN), k-Nearest Neighbors (k-NN), and 

Decision Trees are examples of machine learning 

(ML) models that have been trained to identify subtle 

variations in the properties of red blood cells that 

cannot be seen by the humans [9]. 

An example can be the sensitivity of AI-generated 
diagnostic indices such as the Matos and Carvalho 

Index, which have shown up to 99% sensitivity when 

compared to several more traditional formulaic 

indices such as the Mentzer index or the Green and 

King Index. Neural networks are the most accurate 

machine learning method owing to their capability to 

reproduce complex, nonlinear interactions between 

two or more haematological parameters at the same 

time [10]. The benefits of the AI implementation in 

healthcare practice are as follow: it provides the 

opportunity to apply latest CBC data in order to 

provide non-invasive, fast, and inexpensive 
screening. In broader terms, it eliminate the cost of 

high follow-up genetic testing. It helps the medical 

practitioners to prioritize patients who require further 

testing. AI is a useful, pre-screening tool that 

enhances the efficiency of laboratory work and 

improves access to early detection, particularly in 

low-resource settings, instead of molecular 

diagnostics replacement [11]. 

2. Conventional Diagnostic Approaches 

2.1 Haematological parameters (CBC, MCV, 

MCH, RDW) 

Anaemia and thalassaemia are initially diagnosed 

with simple haematological tests including Complete 

Blood Count (CBC). Mean corpuscular volume 

(MCV), which gauges the typical size of red blood 

cells, is one of the key haematological parameters 

used in screening as MCV readings are usually low in 

thalassaemia and iron deficiency anaemia (IDA), 
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which is indicative of microcytosis. The average 

quantity of haemoglobin per red cell is indicated by 

mean corpuscular haemoglobin (MCH) which is 

reduced in thalassaemia and IDA, indicating 

hypochromia [12]. Red blood cell size variation is 

measured by the Red Cell Distribution Width 

(RDW). Because red blood cells change size as new 

cells are formed in iron-deficient environments, 

RDW is typically high in IDA. In thalassaemia, RDW 

is typically normal or slightly raised because of 

consistently small cells. Since the microcytic, 

hypochromic profiles of thalassaemia trait and IDA 

are identical, these parameters offer a first hint but 

are insufficient to distinguish between the two 

disorders [13]. 

2.2 Traditional indices (Mentzer, Shine & Lal, 

Green & King, England & Fraser, etc.) 

Based on CBC characteristics, a number of 

mathematical diagnostic indices have been 

established to distinguish between IDA and 

thalassaemia. These indices integrate two or more 

haematological variables using straightforward 

formulas

Table 1: Commonly used indices 

Sr# Index Name Formula Diagnostic Principle 

 

01 
Mentzer Index MCV / RBC 

< 13 → β-Thalassaemia trait; > 13 → Iron 

Deficiency anaemia (IDA) 

 

02 
Shine & Lal Index (MCV² × MCH) / 100 

Lower values suggest Thalassaemia; higher 

values suggest IDA 

 

03 
Green & King Index (MCV² × RDW) / (Hb × 100) 

Higher values indicate IDA; lower values indicate 

Thalassaemia 

 

04 
England & Fraser 

Index 
MCV – RBC – (5 × Hb) – 3.4 

Negative value → Thalassaemia; Positive value 

→ IDA 

Although these indices are inexpensive and easy to 

calculate, their accuracy varies across populations 

because of differences in genetics, nutritional status, 

and reference ranges. Thus, while they serve as useful 

screening tools, they cannot replace confirmatory 

testing. 

2.3 Genetic and molecular testing (gold standard, 

limitations in cost and access) 

The most reliable method for diagnosing 

thalassaemia is still molecular diagnosis. Abnormal 

haemoglobin fractions can be found using methods 
like high-performance liquid chromatography 

(HPLC) and haemoglobin electrophoresis. Certain 

gene deletions or mutations in the HBA (α-globin) or 

HBB (β-globin) genes can be found using PCR-based 

techniques [16]. These tests do have certain limits, 

though. They need certain equipment and are costly. 

In areas with limited resources, availability is 

restricted. Their long turnaround times make them 

impractical for extensive screening. Consequently, 

alternative diagnostic methods, including models that 

rely on artificial intelligence (AI), which are capable 

of analysing regular blood samples and offer quick 
and low-cost screening prior to molecular 

confirmation are gaining popuarity.  

3. Artificial Intelligence in Medical Diagnosis  

3.1 Concept of AI and Machine Learning in 

Medicine 

Artificial intelligence (AI) is the set of computational 

systems that are capable of performing tasks such as 

pattern recognition and decision-making that would 

otherwise require human intellect [17]. Machine 

learning (ML), which is a vital aspect of AI, allows 

algorithms for training by discovering patterns in data 

without human instructions and improve their 

performance. To offer precise diagnostic data, AI and 

ML are applied to the field of medicine to process 

complicated data, including laboratory outcomes and 

medical imaging. AI has a potential to identify 
genetic defects that are associated with hematologic 

diseases, including thalassaemia [20]. This approach is 

particularly advantageous in regions with a high 

prevalence of such infections where testing access is 

limited . Neural networks is a common machine 

learning method that processes several data inputs 

based on a simulated structure of biological neurons 
[22]. Ultimately, AI enhances the accuracy of medical 

diagnoses by integrating a large number of data 

sources and reducing the subjectivity of their 

interpretation. 

 

3.2 How AI “Learns” from Blood Test Data 

Annotated blood test datasets, where the outcome of 

tests, including the presence of thalassaemia, is 

confirmed genetically, are initially fed into AI 

models.  haemoglobin (Hb), mean corpuscular 

volume (MCV), and red blood cell count (RBC) are 

examples of input features used by supervised 
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learning systems to predict diagnostic labels [23].  For 

example, thalassaemia carriers are frequently 

identified by low MCV and increased RBC, which 

models learn through recurrent training.  Class 

imbalances are addressed by methods such as the 

Synthetic Minority Oversampling Technique 

(SMOTE), which creates samples for 

underrepresented groups. In order to reduce 

prediction errors during training, models adjust 

parameters using boosting in ensemble methods or 

back propagation in neural networks, while cross-

validation techniques like 10-fold splits, assess 
generalizability by testing on unseen data sections.  

Prior to feature extraction and classification in image-

based applications, pre processing divides 

electrophoresis lanes [24]. This learning process make 

models achieve accuracy, which often exceeds 95 

percent with validated cohorts.  

 

3.3 Benefits of AI In Compare and Contrast to 

Traditional Indices 

Because of similarity, even traditional indicators such 

as Mentzer index (MCV/RBC), which relies on 
simple thresholds, often fail to discriminate between 

thalassaemia and iron deficiency anaemia. An 

example of this is the use of AI models, which 

integrate multiple parameters simultaneously with 

greater accuracy of  99.5 as compared to 93% with 

traditional methods. They are cost-effective and do 

not require any additional equipment; hence, a given 

environment may readily handle them since it only 

requires a few seconds to process data and provide 

findings. In normalcy cases, where traditional 

measures such as Green and King are not doing well, 

AI reduces false negative results. As an example, 
age- and red cell distribution width  (RDW)-added 

models are more specific than those using mean 

cellular haemoglobin, by up to 22% . Interpretability 

tools, like SHAP values, are used to build clinical 

trust, as it offers an explanation of feature 

contributions. The AI helps with early intervention, 

screening carriers with the number of misdiagnosis 

decreased by 15-20% with the large population [25]. 

Finally, cross-center studies indicate that the capacity 

of AI to be able to adjust to a diversity of individuals 

works better than rigid classical formulas. 
 

 4. Artificial Intelligence in Detection of 

Thalassaemia 

4.1 Machine Learning Models 

Machine learning models, trained on thousands of 

datasets, can classify thalassaemia subtypes based on 

using blood parameters or pictures and achieve 

sensitivity of over 90%. The evaluation of these 

models is through metrics such as area under the 

curve (AUC) and is divided into rules based on deep 

learning models. Large, balanced datasets achieve 

better performance, and imbalances are dealt with by 

preprocessing. 

In order to classify thalassaemia, decision trees 

create hierarchical rules by dividing data according to 

thresholds such as MCV <80 fL. By exposing 

important characteristics like RBC count, they 

provide clearity.  In one investigation, a C4.5 

decision tree was able to distinguish between beta-

Thalassaemia minor and iron insufficiency with 

99.1% accuracy .  Similar to ensemble approaches, 
boosted variants achieve 96% carrier detection.  One 

of the drawbacks is overfitting, which can be 

decreased via trimming. 

Assuming independence among features such as Hb 

and MCV, Naïve Bayes classifiers employed 

probabilistic methods.  For quick screening, these are 

excellent at managing partial data. For carriers of 

beta-thalassaemia, reported accuracy is 96%.  In 

noisy datasets, this model performs better than trees, 

but if assumptions are incorrect, it could perform 

worse.   
In K-Nearest Neighbors method, labels are given 

based on how close they are to k comparable 

instances in feature space, usually 5–10 .  It 

effectively catches nonlinear patterns in short 

datasets, with a 98% sensitivity for alpha-

thalassaemia characteristics.  The choice of distance 

metrics, such as Euclidean, affects performance for 

CBC values.  Implementation is simplified without a 

formal training step, but computation time increases 

as data size increases [25]. 

 

Support Vector Machines utilize hyperplanes to 
distinguish between classes in high-dimensional 

space, minimizing the risk of overfitting. With 99% 

specificity, electrophoresis image analysis is 

accurately done using this approach [26]. Kernel 

functions facilitate nonlinear classification, achieving 

95% accuracy in mixed anaemias . With huge  

imbalance, this approach is suitable for varied 

datasets but faces scalability issues with volume. 

 

Artificial Neural Networks (ANNs) comprise 

interconnected nodes processing inputs through 
layers to capture complex patterns. Deep variants like 

convolutional neural networks (CNNs) classify 

electrophoresis images with 95.8% accuracy. A deep 

neural network using RBC indices reached 89.7% 

overall. Ensemble boosts like XGBoost achieve 

99.3% on private alpha-thalassaemia sets. CatBoost 

models hit 85% for genotyping, with SHAP 

highlighting MCV importance. ANN performance is 

further improved by  unique framework that uses

http://www.tandfonline.com/
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 medical imaging to diagnose thalassaemia, which 

achieves 98% accuracy in automated systems. These 

require large data but excel in nonlinear tasks [27]. 

Table 2: Performance Metrics of Machine Learning Models for thalassaemia Detection 

Model Type Key Features Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC Dataset 

Size 

Citation 

Decision Trees 

 

MCV, RBC, 

RDW 

99.1 99.1 99.4 0.992 396 (18) 

Naïve Bayes Hb, MCV, MCH 96 98.4 98.7 N/A Various (19) 

K- Nearest 

Neighbors 

RBC, RDW, Hb 98 

 

98.4 

 

98.7 

 

N/A 

 

Mixed 

 

(20) 

 

Support 

Vector 

Machines 

MCV, MCH, 
Images 

 
95-99 

 
83 

 
95 

 
N/A 

 
200 

Images 

 
(20) 

ANNs(CNN, 

XGBoost, 

CatBoost) 

All CBC, Age, 

Sex 

 

85-99.3 

 

85-99.3 

 

81-99.3 

 

0.84-
0.96 

 

8693-
31,311 

(25) 

 

 

4.2 AI-Based Diagnostic Indices 

Development of New Indices (e.g., Matos & 

Carvalho Index) 

The index creation with the help of AI is based on 

optimization of hematologic formulas. Matos and 

Carvalho Index (MCI) = 1.91(RBC) + 0.44(MCHC) 

with a cutoff of 23.85 used to identify carriers with a 

sensitivity of 99.3%. It was based on 106 patients and 

tuned with ROC analysis on 227 patients and uses 

ROC analysis. MultiThal-Classifier (M-THAL) is an 

XGBoost-based classifier with sensitivity of 90% 

when used to identify normocytic, microcytic 
thalassaemia, iron deficiency and normals. It has 14 

CBC features, with SHAP ranking features such as 

MCV. The index, TVGH-NYCU, which is driven by 

ML, has an AUC of 0.76 in adults. These indices take 
advantage of regular tests, and do not rely on genetics 

[28] .  

Traditional Indices Comparisons  

Conventional indices such as Mentzer have 94% 

sensitivity but have overlap issues. Green & King 

capture 97% AUC but fail to capture normocytic 

cases. The sensitivity of AI indices such as MCI is 

enhanced to 99%, and the false positives are reduced 

by 15%. GBoost models achieved an AUC of 99%, 

which is much higher than the 75% observed in SCS 

BTT. CatBoost is able to predict beta-thalassaemia 
with 80% accuracy in multi-class, which is better 

than formulas of 0% sensitivity [28].   

Table 3: Comparative Performance of AI-Based and Traditional Diagnostic Indices for thalassaemia 

Index Type Sensitivity (%) Specificity (%) AUC Limitations Citations 

Mentzer 

(traditional) 

 

94 

 

75 
0.93 Overlaps with IDA 

 

(18) 

Green and King 

(traditional) 

 

97 

 

91 
0.97 Normocytic misses 

 

(20) 

M-Thal (Al) 
 

90 

 

98 
0.94 

Computation 

intensive 

 

(25) 

SCS BTT 

(traditional) 

 

64 

 

79 
N/A Low accuracy 

 

(26) 
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4.3 Deep Learning Approaches  

Deep learning (DL), a subfield of machine learning, 

which uses multi-layer neural networks to 

automatically learn hierarchical feature 

representations from raw data. Unlike traditional 

machine learning, where human experts manually 

design or select features, DL models can internally 

optimize which features matter most. In haemotology 

and diagnostics, DL has been increasingly applied, 

from analyzing molecular data to automating 

cytomorphology and interpreting lab results [29].  

DL is particularly promising for thalassaemia 
diagnosis because it can integrate morphological 

information (e.g. images of red blood cells) with 

quantitative laboratory data (e.g. CBC parameters) 

as learning nonlinear interactions is difficult with 

human-designed indices.  

Convolutional Neural Networks (CNN)  

Deep convolutional neural networks have been 

applied to thalassaemia screening by learning 

complex, non-linear patterns in standard blood count 

data (and sometimes images) that traditional 

formulaes cannot capture. In practice, CNNs often far 
outperform simple indices. For example, Nasir et al. 

(2025) applied a CNN to β-thalassaemia data and 

reported ~98.1% accuracy on a private clinical 

dataset. Similarly, another study trained a CNN on 

288 Sri Lankan α-thalassemic cases and achieved 

~85% accuracy (with AUC≈0.95)  , notably higher 

than any classical index on the same data. These 

models automatically combine multiple CBC features 

(MCV, MCH, RBC, etc.) through learned filters, 

enabling robust classification of carriers vs healthy 

controls. In summary, CNNs have demonstrated very 

high sensitivity and specificity in recent studies, often 

reducing missed cases relative to older methods [30].  

XGBoost  

Extreme Gradient Boosting (XGBoost) is an 

ensemble tree-based algorithm well-suited to tabular 

haemotology data. It builds many decision trees 

sequentially, capturing feature interactions that 

simpler models might miss. In thalassaemia 

screening, XGBoost has achieved near-perfect 

accuracy in several reports. For instance, Nasir et al. 

found that XGBoost reached 99.34% accuracy for α-

thalassaemia on their private dataset. Another study 
combining CBC and HPLC features reported 

XGBoost training accuracy of ~99.5% (with >99% 

test accuracy) [31], outperforming SVM. These results 

suggest XGBoost can read subtle patterns (e.g. in 

MCV, MCH, HbA2 levels) with remarkable 

precision. In practice, XGBoost is often as accurate 

or more accurate than deep neural networks in this 

domain, while requiring less parameter tuning for 

smaller datasets. Its strengths are high predictive 

power on structured data and robustness to collinear 

features; its drawback is that it still needs adequate 

data and careful tuning to avoid overfitting.  

Public vs. Private Datasets  

Data source has a major impact on AI performance. 

Publicly available thalassaemia datasets are typically 

small (often <1000 samples) and may lack detailed 

features, whereas private clinical cohorts can be 

much larger and richer. Nasir et al. explicitly 
compared models on public vs. private data and 

found far higher accuracy on the private set . They 

attributed this to greater sample size and higher-

quality measurements in the private data. For 

example, their CNN/XGBoost models achieved ~98–

99% accuracy on a large hospital dataset, whereas 

training on smaller published datasets yielded weaker 

results. Likewise, Christensen et al. trained a CNN on 

only 288 patient records from Sri Lanka and achieved 

“only” ~85% accuracy, far below the ~98% seen with 

larger data. These examples underscore that modern 
AI models benefit immensely from large, diverse 

cohorts. In practice, a deep learning model trained on 

one hospital’s dataset may not generalize to another 

region unless trained or validated; hence, data-

sharing and multi-center studies are needed to 

achieve robust, widely applicable algorithms [32].  

5. Comparative Analysis of Studies  

Recent literature shows that AI-based classifiers 

consistently outperform traditional haematological 

indices in thalassaemia screening. Traditional 

formulae like the Mentzer or Shine–Lal index yield 

modest sensitivity/specificity (e.g. Mentzer index 
~70–95% sensitivity ), leading to frequent 

misclassification. In contrast, ML and DL models 

typically achieve much higher accuracy. Numerous 

studies  found many modern algorithms with 

accuracy in the mid-90% or higher. For example, in 

multiple recent reports, AI systems reached >98% 

accuracy. One CNN-based model (using image and 

CBC features) achieved 99% accuracy with 100% 

sensitivity. In practice, ML/DL methods often detect 

virtually all carrier cases that simpler indices would 

miss.  

Key comparative findings include:  

Accuracy and AUC: AI models (SVM, RF, 

XGBoost, CNN, etc.) generally report 90–99% 

accuracy. For instance, Nasir et al. (2025) report 

98.10% accuracy (CNN) and 99.34% (XGBoost) on 

http://www.tandfonline.com/
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large datasets. In comparison, classical indices 

typically generated accuracies around 75–90% (and 

often a trade-off between sensitivity and specificity). 

Several studies have reported that machine learning 

approaches can achieve remarkably high accuracy in 

detecting β-thalassaemia traits, often reaching or even 

exceeding 95%. In some cases, these advanced 

models demonstrate near-perfect performance, 

underscoring their strong capability to distinguish 

thalassaemia from other anaemias and their claim as 

powerful tools in clinical diagnostics. In summary, 

ML and DL approaches significantly reduce both 

false negatives and false positives relative to 

traditional scoring. 

Table 4: study results 

Model  Dataset / Focus  Reported Accuracy  Source  

CNN & XGBoost  α- & β-thalassaemia; public vs private 

datasets  

98.10 % (CNN), 99.34 % 

(XGBoost)  

 [30] 

CNN  288 α-thalassaemia cases (small 

dataset)  

85 %   

  

[30]  

  

CNN + PCA  β-thalassaemia  96 %  [33]  

Federated Learning  5,066 β-thalassaemia patients  92.38 %  [34]  

Ensemble (multiple 

classifiers)  

α + β detection (5,066 cases)  93 %  [35] 

Hybrid CNN (images + 

CBC)  

Blood-smear + CBC data  99 % (100 % sensitivity)  [36]  

  

 

Strengths: For AI classification, multiple features 

are simultaneously integrated, capturing subtle 

patterns. They can be trained to improve overall 

accuracy, sensitivity and specificity. Many studies 
report high sensitivity (often >95%) e.g. the CNN 

image-based model achieved 100% sensitivity. 

Ensemble methods like XGBoost combine weak 

learners to reach >99% accuracy [33], robustly 

distinguishing α and β variants. ML/DL can also be 

updated with new data, making them adaptable to 

different populations. Overall, these methods 

dramatically reduce misdiagnosis and the risk of 

giving inappropriate iron therapy to unrecognized 

thalassaemia carriers.  

Weaknesses: The main limitations of these studies 
are data quality and size. Many models were 

trained on relatively small or homogeneous datasets, 

raising overfitting concerns. For example, deep 

neural net achieved 96% accuracy but the authors 

noted its small training set and overfitting risk [34]. 

Several studies could not distinguish thalassaemia 

subtypes due to incomplete labeling. Furthermore, 

while neural nets (CNN/ANN) often perform best, 

they are “black boxes” with low interpretability; 

simpler indices, though less accurate, are transparent. 

Traditional indices still have the advantage of 

requiring no training and being extremely easy to 

compute, but they sacrifice accuracy (e.g. Mentzer’s 

index had only ~70% sensitivity ). In summary, AI 

methods are powerful but depend on large, 

representative data and careful validation. When data 
are limited, even high-performing models can 

degrade; this is why some studies report lower 

accuracy (e.g. 85% in the small Sri Lankan study ).  

Studies have shown that while traditional indices 

demonstrate high diagnostic efficiency for β-

thalassaemia trait detection, modern machine learning 

models often achieve even greater accuracy. 

Conventional approaches like the Mentzer index 

provide reliable results, yet AI-based models 

consistently surpass them in precision and overall 

performance, highlighting the growing potential of 
intelligent algorithms in improving diagnostic 

outcomes. . In practice, this means AI approaches 

correctly classify far more carriers. In summary, 

across multiple recent high-impact studies, AI/ML 

methods consistently outperform traditional 

hematologic indices in accuracy and sensitivity, at 

the cost of requiring more data and computational 

effort. These methods’ strengths (high accuracy, 

flexibility, ability to handle complex feature sets) 

make them promising for screening programs, while 

their weaknesses (data-dependence, explainability)   
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are being addressed through larger studies and 

interpretable models.  

6. Clinical applications and implications 

Early diagnosis, carrier screening, and optimized 

monitoring are central to reducing morbidity and 

preventing new affected births. Artificial intelligence 

(AI) and machine learning (ML) offer promising 

enhancements to conventional approaches. Below is a 

structured discussion of clinical applications, 

implications, and the challenges/limitations of AI in 

thalassaemia care. 

 

6.1 AI in Routine Screening Programme 
Routine screening programme for thalassaemia 

carriers or mild cases historically rely on hematologic 

indices (CBC, RBC indices), iron studies, 

haemoglobin electrophoresis / HPLC, and, where 

available, DNA testing. AI/ML tools can augment or 

partially automate the early triage stage to flag 

suspected carriers or disease. 

Several studies have demonstrated that ML models 

using routine CBC features (e.g., MCV, MCH, RDW, 

RBC count) can distinguish β-thalassaemia trait from 
IDA with high accuracy. For instance, a study of 396 

individuals (216 IDA, 180 β-thalassaemia minor) 

showed that ANN and decision tree models 

outperformed discriminant indices in differentiation 

using CBC alone [35]. Another more recent review 

collated many ML models achieving sensitivities and 

specificities over 90% in distinguishing thalassaemia 

carriers from non-carriers or IDA controls. In 

addition, MultiThal, a multiclass machine learning 

classifier, has been proposed for more refined 

diagnosis and subtype classification of thalassaemia 

using CBC data [36]. A further model, designed for 
pregnant women, used a clinical indicator–based ML 

algorithm to predict thalassaemia risk and achieved 

good discrimination performance. 

Beyond tabular indices, image-based AI has been 

applied. Deep learning on Hb electrophoresis strip 

images has been used for automatic detection of 

abnormal bands. For instance in one study, using 524 

electrophoresis images, CNN models (e.g. 

InceptionV3) achieved detection accuracy ~95.8% 

for distinguishing thalassaemia vs normal patterns 
[37]. Thus, AI may accelerate and standardize 
interpretation of electrophoresis, reducing human 

error and burden. 

In α-thalassaemia, classification using ML models 

has been explored. A study in Sri Lanka used CBC 

and gender features and applied ML to distinguish 

silent and non-carrier states of α-thalassaemia trait. 

Another experiment explored hybrid deep networks 

(transfer learning with feature fusion) achieving 

precision > 94% for thalassaemia detection [38]. 

Thus, in screening programmes, AI holds the 

potential to filter large numbers of low-risk 

individuals and flag high-risk ones for further 

confirmatory workup, increasing throughput and 

reducing cost burdens. 

 

6.2 Avoiding Misdiagnosis and Unnecessary Iron 

Therapy 

A clinical issue is misdiagnosis of thalassaemia with 

IDA which might result in unneccesary iron 
administration causing Iron overload, oxidative 

damage. The AI methods assist in decreasing the 

misclassification through the addition of 

multidimensional characteristics other than the 

straightforward indices. As an example, standard 

indices (e.g. Mentzer, RDW*MCH) do not work well 

in overlapping phenotypes. By comparison, multi-

classifier models that combine several CBC 

characteristics have demonstrated a high diagnostic 

sensitivity and reduced false positive results [38]. One 

of them is the study named “Predicting thalassaemia 
Using Feature Selection Techniques” in which nine 

classification algorithms, as well as several feature 

selection methods, were evaluated; the authors 

established the high discrimination of carrier and 

non-carrier conditions and shed light on the 

shortcomings of prior single-metric indices. In a 

multiclass classification study, the models were 

trained to identify both α and β-thalassaemia 

(major/minor) on the same model this was to ensure 

that mixed phenotypes are not misdiagnosed. 

Therefore, AI can serve as a protective measure that 

will decrease under- and over-treatment.  

 

6.3 Genetic Counselling and Carrier Detection by 

AI 

The control strategies include genetic counselling and 

carrier detection. These can be improved with the 

help of AI and bioinformatics tools in the following 

ways:  

Carrier identification on sequencing data: AI can 

help variant calling, prediction of pathogenicity, 

structural variant detection, as well as genotype 

structural variant correlation. Indicatively, more 
recent molecular reviews have started covering the 

incorporation of AI into gene editing, version 

interpretation, and epigenetic insights into 

thalassaemia scenarios [39]. 

Risk estimation and phenotypic prediction: Given 

a genotype (or pair of variants), AI models may help 

predict disease severity (trait, intermedia, major) by 

incorporating modifier genes, regulatory variants or 

epigenetic features.
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Counselling support tools: Mobile or web-based 

platforms embedding AI modules can deliver 

personalized counselling. 

By integrating genotype, phenotype, and 

demographic data, AI may support more specific 

carrier detection and assist in counselling couples 

with more precise risk estimates. 

 

6.4 AI in Monitoring Complications and 

Treatment Response 
Once a diagnosis is established, thalassaemia patients 

require ongoing surveillance and management. AI 
can add value in: 

 

 Predicting transfusion requirements or 

trends: Time-series ML models may forecast 

when a patient will require increased transfusion 

intensity, enabling earlier intervention. 

 Estimating iron overload non-invasively: MRI 

T2 images are standard for quantifying 

cardiac/liver iron, but computational methods 

may enhance analysis. For instance, 

CHMMOTv1 dataset of cardiac and hepatic 
MRI images in thalassaemia provides a resource 

for training AI models to estimate organ iron 

burden . AI models may integrate lab trends, 

imaging, and demographics to better personalize 

chelation therapy. 

 Predicting complications: Endocrinopathies, 

cardiac disease, liver fibrosis often develop 

gradually. Risk stratification AI models could 

flag patients at higher risk requiring closer 

follow-up. 

 Assessing treatment response: For chelators, 
gene therapy, or novel agents, AI models can 

analyze composite biomarkers to distinguish 

responders vs nonresponders earlier, potentially 

guiding therapy adjustments. 

6.5 Clinical Implications 

Earlier and more accurate diagnosis: AI tools can 

shorten the diagnostic delay, reducing end-organ 

damage and morbidity. 

Reduced misdiagnosis and harm: Better 

discrimination avoids unnecessary iron therapy or 

delayed diagnosis. 

Personalization: AI enables stratified risk and 
monitoring plans.  

Resource efficiency: Automating parts of 

interpretation reduces the burden on specialist 

clinicians and laboratories. 

6.5.1 Economic Implications 
AI use as a filter can save us on the number of 

confirmatory tests (HPLC, DNA sequencing) that are 

costly to carry out.  

Preventing the unnecessary iron therapy or 

overtreatment helps decrease direct and indirect 

healthcare expenses. 

Laboratory automation (smear reading, interpretation 

of electrophoresis) saves on labor time and 

turnaround.  

These expenses comprise model development of AI, 

infrastructure (computing, storage), validation, as 

well as regulatory compliance, which should be 

traded off against long-term savings. Cost-benefit 

models in most contexts are necessary to gain 

adoption particularly in low and middle income 
nations with constrained budgets.  

 

7. Challenges and Limitations  

 

Quality of Data and Sample Diversity 

Most AI research is retrospective, small, single-centre 

and based on quite homogeneous populations 

(ethnicity, mutation spectra). This restricts the 

general approach and external validity. Missing 

values, measurement error (different CBC machines, 

reagents), or labeling noise can lead to datasets with 
missing values, variability in measures, or which 

worsen the robustness of the models. The models 

cannot effectively deal with edge cases because the 

rare genotypes or mixed phenotypes (coexistent IDA 

+ trait) are not well represented in the model. 

Overfitting and Bias  
The deep models or complex ML are prone to 

overfitting, particularly when the sample sizes are 

small; the performance can deteriorate when using 

external data. Its introduction may occur because of 

stratification of populations (populations trained on a 

single ethnicity may not work well on a different 
population), selection bias (between hospital and 

community samples), and prevalence bias (lop-sided 

classes). The absence of transparency (black boxes) 

can cause a decrease in clinical trust or the presence 

of hidden biases. 

Integration into Healthcare Systems 
AI tools must interoperate with laboratory 

information systems (LIS), EHRs, and hospital 

workflows. Without seamless integration, uptake is 

limited. Clinician acceptance requires that AI outputs 

be interpretable, reliable, and delivered in actionable 
form at the point of care. Maintenance, updates, 

retraining and version control over time are necessary 

to keep models valid. 

Ethical, Privacy, and Regulatory Issues 

Use of genetic data, imaging, and identifying health 

data demands strict data security, de-identification, 

and informed consent frameworks. Regulatory 

oversight (e.g., as medical devices or decision 
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support tools) may require validation trials, audits, 

and approvals which differ across jurisdictions. 

Clinicians and patients may demand transparent 

reasoning rather than black box predictions. 

Liability:Legal and ethical frameworks must be 

established for AI mistakes 

Equity and Accessibility 

Many high-prevalence regions are resource-limited. 

AI tools requiring advanced computation, stable 

internet, or high-resolution imaging may not be 

feasible. Implementation costs, training of personnel, 

maintenance, and infrastructure may not be 
affordable in low-income settings. If AI models are 

developed using data from high-income settings and 

directly imported to underprivilaged populations, 

disparities may worsen. 

Model Generalisability and Performance Inflation 

Although several studies report diagnostic accuracies 

exceeding 95%, these results are often obtained under 

controlled conditions using relatively homogeneous 

or single-centre datasets. The lack of large, multi-

centre external validation raises concerns regarding 

overfitting and real-world generalisability. Therefore, 
high reported accuracy should be interpreted 

cautiously until prospective clinical validation and 

regulatory approval pathways are established. 

8. Future Perspectives  

8.1 Use of AI in Large-Scale Screening Programs 

Putting artificial intelligence into big testing 

programs has greatly changed diseases detection, 

making things reiable, fast, and versatile. Computer 

programs that based on deep learning model have 

been better at predicting diabetes and prediabetes, 

which means fewer pointless tests and overlooked 

sicknesses. Using artificial intelligence in large breast 
cancer tests has kept the right diagnosis rate while 

greatly lowering the load of work, cutting the need 

for another reader. In the same way, AI based lung 

cancer tests help radiologists feel confident by giving 

other readings of lung lumps and finding health 

problems related to smoking. Computer learning 

systems is also being used for big virtual drug tests, 

grouping chemicals well and sorting out correct and 

wrong results[40]. Also, deep learning methods in 

diabetic eye disease tests have been accurate, making 

things easier to grow and better using resources in 
public health areas. Artificial intelligence is 

promising for making work better through sorting 

tools, improving how things work, lowering false 

negatives, and keeping the same detection rate in 

tests for everyone.  

8.2 Combining AI with Genetic Testing for 

Precision Medicine  

Artificial intelligence has sped up the progress of 

tailored medical care by making genetic tests and 

data analysis better. By adding AI, complicated 

genetic information can be turned into useful 

understandings, which helps with personalized 

diagnoses and treatments. Using machine learning to 

mix health and genetic details has made guesses 

about how people will react to medicine better, like in 

the production of seizure medicines. Machine 

learning programs have gotten total model accuracy 
up to 88%, making choices about treatment and 

predictions better. AI-based drug response analyses 

also make custom-made medicine plans easier, which 

makes treatments work better and lowers bad side 

effects [41]. Also, using AI to mix different kinds of 

biological information helps find diseases early, 

change treatments for each person, and make drug 

creation processes work better. Overall, these uses 

highlight how AI is changing tailored medicine, 

helping with the ongoing big change in healthcare.  

8.3 Mobile/Point-of-Care AI Tools for Low-

Resource Settings  

New improvements highlight how helpful artificial 

intelligence could be in portable and on-site medical 

tools, mainly for places with few resources and 

urgent situations. AI make processes work better and 

improve accuracy of diagnoses in poorer countries. 

Computer programs that learn deeply can help people 

who respond to emergencies by making it easier to 

find diseases right away using tools that can be 

carried around. Even with these improvements, there 

are still problems with how well they work in 

different situations, how easy it is to get data, and 
making sure POCUS tools and programs are all the 

same [42]. Thinking about what is right and wrong, 

how well patients follow instructions, and making 

sure everyone has fair access are also very important 

things that affect whether these tools are used 

successful. Even so, portable medical tests that use 

AI are still a reliable way to make healthcare more 

available everywhere. 

8.4 Potential Expansion to Other 

haemoglobinopathies  

Conditions such as β-thalassaemia and sickle cell 
disease are widespread inherited problems globally 

and lead to serious health concerns. Although bone 

marrow transplants represent the sole method for 

completely fixing them, there aren't sufficient 

individuals available for donation. Another potential 

method involves gene therapy, which might introduce 
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genes, stop them, or accurately adjust areas 

influencing globin [43]. However, it remains 

challenging to alter cells sufficiently and guarantee 

that blood stem cells continue multiplying over an 

extended period. Looking ahead, we must discover 

improved methods to render gene therapy more 

affordable and simpler to manufacture, while also 

addressing ethical and realistic concerns. These 

innovative concepts may assist in decreasing the 

quantity of individuals becoming ill and dying due to 

inherited blood conditions across the globe [44].  

 

Conclusion: 

The field of Artificial Intelligence has demonstrated 

enormous potential in transforming the diagnostic 

environment of thalassaemia. Although traditional 

indices and methods of molecular analysis still hold a 

core role, AI-based methods introduce a whole new 

accuracy, efficiency, and availability of the process. 

Clinicians are now able to diagnose thalassaemia 

carriers more efficiently, through machine learning 

and deep learning models,  and avoid cases of 

misdiagnosis and unwarranted treatment. The 
application of AI in clinical practice also creates new 

opportunities in terms of round-the-clock monitoring, 

genetic counseling, and screening of a large 

population. Nevertheless, to be able to put these 

innovations into practical use, the problem of 

standardization of data, transparency of algorithms, 

and their ethical application should be resolved. AI 

must not be considered the alternative to molecular 

testing; it can be regarded as the supplementary tool 

that improves diagnostic accuracy and expands the 

access to early diagnosis, particularly in the resource-

limited setting. As the world continues to evolve and 
AI is implemented responsibly, it is bound to be a 

pillar in the battle against thalassaemia in the world. 
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