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1. Introduction

Thalassaemia is a broad group of autosomal
recessive genetic diseases. In 2021, the worldwide
number of thalassaemia cases was 1,310,407. The
number of deaths remained at 11,087, with an age-
standardized mortality rates (ASMR) of 0.15 per
100,000 persons ™ . It inhibits the synthesis of a
single or more haemoglobin globin chains and is the
most widespread monogenic disorder in the world
with an estimated population of 1-5 percent of the
world population having a hereditary thalassaemia
mutation 1. The disease is specifically prevalent in
areas of Africa, Middle East, Mediterranean region
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Thalassaemia is a serious genetic disorder that causes severe anaemia,
resulting in serious health and economic problems on the entire globe,
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found in comparative studies that Al-based models tend to be more sensitive
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and Southeast as well as South Asia. Migration has,
however, made it widespread in North America and
Northern Europe. This expanding global distribution
has created significant inequities in access to
screening, diagnostic, and management services,
while simultaneously placing new pressures on
already strained healthcare systems. El.

Thalassaemia is caused by mutation which affects
production of globin chain. It leads to the imbalanced
production of the a and B globin chains resulting in
chronic anaemia and poor erythropoiesis (red blood
cell breakdown). More than 200 different mutations
have been identified in the 11HBB globin gene on
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chromosome 11. Most of these point mutations
involve alteration of a single nucleotide. The clinical
manifestations may vary tremendously in patients
with high-risk transfusion-dependent anaemia up to
an asymptomatic carrier state, depending on the type
and the extent of genetic defect.

The two primary forms of thalassaemia include o-
thalassaemia and p-thalassaemia resulting from
insufficient or minimal production of alpha and beta-
globin chains, respectively. It requires lifelong
transfusion therapy and presents ranging from
moderate hypochromic microcytosis to severe
anaemia. Untreated cases of B-Thalassaemia major,
the most serious condition typically diagnosed in
childhood, may result in growth retardation, skeletal
defects, and organ dysfunction caused by iron
overload and chronic hypoxia. Resulting from
development of iron chelation therapy and regular
transfusion programs, thalassaemia major no longer
presents an fatal childhood disease but a manageable
chronic disease [,

However, patients are susceptible to liver disease,
osteoporosis, endocrine disorders, and heart failure.
Gene therapy emerged as a promising field of
therapy, while treatment regimens including
allogeneic hematopoietic stem cell transplantation
(HSCT) are applied in specific patients.

Prevention still remains the best course of action
despite these medical advancements. Prenatal
diagnosis, carrier identification, and premarital
screening are essential for reducing prevalence of the
disease 1. However, there are insufficient screening
and molecular diagnostic facilities in many highly
affected areas.

Thalassaemia diagnosis is done using a combination
of haematological, biochemical, and molecular
testing. The initial screening step mostly involves a
Complete Blood Count (CBC). Thalassaemia carriers
have small, pale red blood cells with reduced
haemoglobin content. This is reflected by low Mean
Corpuscular Volume (MCV) values of approximately
60-70 fL and low Mean Corpuscular Haemoglobin
(MCH) values of around 19-23 pg. Quantitative
analysis of haemoglobin fractions is possible by
performing haemoglobin electrophoresis and High-
Performance Liquid Chromatography (HPLC) [,

High HbF and HbA2 are used to identify B-
thalassaemia carriers. As the two conditions present
with small and pale red blood cells, serum ferritin
testing helps in the exclusion of iron deficiency
anaemia (IDA), which is a major differential
diagnosis. Molecular confirmation is achieved by
PCR based testing, such as ARMS-PCR, allele-

specific PCR, and sequencing to identify harmful
mutations.Molecular testing is considered the gold
standard, but it is expensive, time-consuming, and is
often not available in areas with limited resources [,
This causes a treatment dilemma as although the two
conditions have similar blood profiles, there is a
significant difference in the treatment of IDA and
thalassaemia. Misdiagnosis may lead to the
probability of severe illness in children because a
carrier may get unnecessary iron treatment or miss
out the treatment of thalassaemia. Over the past
years, medical diagnosis has been transformed by Al,
which is able to learn and identify hidden patterns
using big data . In the field of haemotology, Al can
distinguish thalassaemia and iron deficiency anaemia
by analyzing routine CBC data without necessarily
using special molecular analysis. Artificial Neural
Networks (ANN), k-Nearest Neighbors (k-NN), and
Decision Trees are examples of machine learning
(ML) models that have been trained to identify subtle
variations in the properties of red blood cells that
cannot be seen by the humans I,

An example can be the sensitivity of Al-generated
diagnostic indices such as the Matos and Carvalho
Index, which have shown up to 99% sensitivity when
compared to several more traditional formulaic
indices such as the Mentzer index or the Green and
King Index. Neural networks are the most accurate
machine learning method owing to their capability to
reproduce complex, nonlinear interactions between
two or more haematological parameters at the same
time %, The benefits of the Al implementation in
healthcare practice are as follow: it provides the
opportunity to apply latest CBC data in order to
provide non-invasive, fast, and inexpensive
screening. In broader terms, it eliminate the cost of
high follow-up genetic testing. It helps the medical
practitioners to prioritize patients who require further
testing. Al is a useful, pre-screening tool that
enhances the efficiency of laboratory work and
improves access to early detection, particularly in
low-resource  settings, instead of molecular
diagnostics replacement 14,

2. Conventional Diagnostic Approaches

2.1 Haematological parameters (CBC, MCV,
MCH, RDW)

Anaemia and thalassaemia are initially diagnosed
with simple haematological tests including Complete
Blood Count (CBC). Mean corpuscular volume
(MCV), which gauges the typical size of red blood
cells, is one of the key haematological parameters
used in screening as MCV readings are usually low in
thalassaemia and iron deficiency anaemia (IDA),
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which is indicative of microcytosis. The average
quantity of haemoglobin per red cell is indicated by
mean corpuscular haemoglobin (MCH) which is
reduced in thalassaemia and IDA, indicating
hypochromia 2. Red blood cell size variation is
measured by the Red Cell Distribution Width
(RDW). Because red blood cells change size as new
cells are formed in iron-deficient environments,
RDW is typically high in IDA. In thalassaemia, RDW
is typically normal or slightly raised because of
consistently small cells. Since the microcytic,
hypochromic profiles of thalassaemia trait and IDA

are identical, these parameters offer a first hint but
are insufficient to distinguish between the two
disorders 31,

2.2 Traditional indices (Mentzer, Shine & Lal,
Green & King, England & Fraser, etc.)

Based on CBC characteristics, a number of
mathematical  diagnostic  indices have been
established to distinguish between IDA and
thalassaemia. These indices integrate two or more
haematological variables using straightforward
formulas

Table 1: Commonly used indices

Sr#  |Index Name Formula Diagnostic Principle
< 13 — B-Thalassaemia trait; > 13 — Iron
01 Mentzer Index MCV /RBC Deficiency anaemia (IDA)
. Lower values suggest Thalassaemia; higher

2

02 Shine & Lal Index (MCV2 x MCH) / 100 values suggest IDA

. Higher values indicate IDA; lower values indicate

2 L

03 Green & King Index (MCV2 x RDW) / (Hb x 100) Thalassaemia

England & Fraser Negative value — Thalassaemia; Positive value
04 |index MCV - RBC — (5 x Hb) — 3.4 . IDA

Although these indices are inexpensive and easy to
calculate, their accuracy varies across populations
because of differences in genetics, nutritional status,
and reference ranges. Thus, while they serve as useful
screening tools, they cannot replace confirmatory
testing.

2.3 Genetic and molecular testing (gold standard,
limitations in cost and access)

The most reliable method for diagnosing
thalassaemia is still molecular diagnosis. Abnormal
haemoglobin fractions can be found using methods
like high-performance liquid chromatography
(HPLC) and haemoglobin electrophoresis. Certain
gene deletions or mutations in the HBA (a-globin) or
HBB (B-globin) genes can be found using PCR-based
techniques (61, These tests do have certain limits,
though. They need certain equipment and are costly.
In areas with limited resources, availability is
restricted. Their long turnaround times make them
impractical for extensive screening. Consequently,
alternative diagnostic methods, including models that
rely on artificial intelligence (Al), which are capable
of analysing regular blood samples and offer quick
and low-cost screening prior to molecular
confirmation are gaining popuarity.

3. Artificial Intelligence in Medical Diagnosis
3.1 Concept of Al and Machine Learning in
Medicine

Artificial intelligence (Al) is the set of computational
systems that are capable of performing tasks such as
pattern recognition and decision-making that would
otherwise require human intellect 271, Machine
learning (ML), which is a vital aspect of Al, allows
algorithms for training by discovering patterns in data
without human instructions and improve their
performance. To offer precise diagnostic data, Al and
ML are applied to the field of medicine to process
complicated data, including laboratory outcomes and
medical imaging. Al has a potential to identify
genetic defects that are associated with hematologic
diseases, including thalassaemia 2%, This approach is
particularly advantageous in regions with a high
prevalence of such infections where testing access is
limited . Neural networks is a common machine
learning method that processes several data inputs
based on a simulated structure of biological neurons
(221 Ultimately, Al enhances the accuracy of medical
diagnoses by integrating a large number of data
sources and reducing the subjectivity of their
interpretation.

3.2 How AI “Learns” from Blood Test Data

Annotated blood test datasets, where the outcome of
tests, including the presence of thalassaemia, is
confirmed genetically, are initially fed into Al
models.  haemoglobin (Hb), mean corpuscular
volume (MCV), and red blood cell count (RBC) are
examples of input features used by supervised
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learning systems to predict diagnostic labels 1%, For
example, thalassaemia carriers are frequently
identified by low MCV and increased RBC, which
models learn through recurrent training.  Class
imbalances are addressed by methods such as the
Synthetic ~ Minority ~ Oversampling  Technique
(SMOTE), which creates samples for
underrepresented groups. In order to reduce
prediction errors during training, models adjust
parameters using boosting in ensemble methods or
back propagation in neural networks, while cross-
validation techniques like 10-fold splits, assess
generalizability by testing on unseen data sections.
Prior to feature extraction and classification in image-
based applications, pre processing  divides
electrophoresis lanes 4. This learning process make
models achieve accuracy, which often exceeds 95
percent with validated cohorts.

3.3 Benefits of Al In Compare and Contrast to
Traditional Indices

Because of similarity, even traditional indicators such
as Mentzer index (MCV/RBC), which relies on
simple thresholds, often fail to discriminate between
thalassaemia and iron deficiency anaemia. An
example of this is the use of Al models, which
integrate multiple parameters simultaneously with
greater accuracy of 99.5 as compared to 93% with
traditional methods. They are cost-effective and do
not require any additional equipment; hence, a given
environment may readily handle them since it only
requires a few seconds to process data and provide
findings. In normalcy cases, where traditional
measures such as Green and King are not doing well,
Al reduces false negative results. As an example,
age- and red cell distribution width (RDW)-added
models are more specific than those using mean
cellular haemoglobin, by up to 22% . Interpretability
tools, like SHAP values, are used to build clinical
trust, as it offers an explanation of feature
contributions. The Al helps with early intervention,
screening carriers with the number of misdiagnosis
decreased by 15-20% with the large population P,
Finally, cross-center studies indicate that the capacity
of Al to be able to adjust to a diversity of individuals
works better than rigid classical formulas.

4. Artificial Intelligence in Detection of
Thalassaemia

4.1 Machine Learning Models

Machine learning models, trained on thousands of
datasets, can classify thalassaemia subtypes based on
using blood parameters or pictures and achieve
sensitivity of over 90%. The evaluation of these
models is through metrics such as area under the

curve (AUC) and is divided into rules based on deep
learning models. Large, balanced datasets achieve
better performance, and imbalances are dealt with by
preprocessing.

In order to classify thalassaemia, decision trees
create hierarchical rules by dividing data according to
thresholds such as MCV <80 fL. By exposing
important characteristics like RBC count, they
provide clearity. In one investigation, a C4.5
decision tree was able to distinguish between beta-
Thalassaemia minor and iron insufficiency with
99.1% accuracy . Similar to ensemble approaches,
boosted variants achieve 96% carrier detection. One
of the drawbacks is overfitting, which can be
decreased via trimming.

Assuming independence among features such as Hb
and MCV, Naive Bayes classifiers employed
probabilistic methods. For quick screening, these are
excellent at managing partial data. For carriers of
beta-thalassaemia, reported accuracy is 96%. In
noisy datasets, this model performs better than trees,
but if assumptions are incorrect, it could perform
worse.

In K-Nearest Neighbors method, labels are given
based on how close they are to k comparable
instances in feature space, usually 5-10 . It
effectively catches nonlinear patterns in short
datasets, with a 98% sensitivity for alpha-
thalassaemia characteristics. The choice of distance
metrics, such as Euclidean, affects performance for
CBC values. Implementation is simplified without a
formal training step, but computation time increases
as data size increases !,

Support Vector Machines utilize hyperplanes to
distinguish between classes in high-dimensional
space, minimizing the risk of overfitting. With 99%
specificity, electrophoresis image analysis is
accurately done using this approach [Pl Kernel
functions facilitate nonlinear classification, achieving
95% accuracy in mixed anaemias . With huge
imbalance, this approach is suitable for varied
datasets but faces scalability issues with volume.

Artificial Neural Networks (ANNs) comprise
interconnected nodes processing inputs through
layers to capture complex patterns. Deep variants like
convolutional neural networks (CNNs) classify
electrophoresis images with 95.8% accuracy. A deep
neural network using RBC indices reached 89.7%
overall. Ensemble boosts like XGBoost achieve
99.3% on private alpha-thalassaemia sets. CatBoost
models hit 85% for genotyping, with SHAP
highlighting MCV importance. ANN performance is
further improved by unique framework that uses

JIRAP Vol 2| Issue 2 (July — Dec) 2025

7


http://www.tandfonline.com/

JOURNAL OF INTERDICIPLINARY RESEARCH
IN ALLIED HEALTH AND PHARMACY
2025, VOL. 02 Issue. 2

medical imaging to diagnose thalassaemia, which
achieves 98% accuracy in automated systems. These

require large data but excel in nonlinear tasks [#7.

Table 2: Performance Metrics of Machine Learning Models for thalassaemia Detection
Model Type Key Features Accuracy | Sensitivity | Specificity | AUC Dataset | Citation
(%) (%) (%) Size
Decision Trees | MCV, RBC, 99.1 99.1 99.4 0.992 396 (18)
RDW
Naive Bayes Hb, MCV, MCH | 96 98.4 98.7 N/A Various | (19)
K- Nearest RBC, RDW, Hb |98 98.4 98.7 N/A Mixed (20)
Neighbors
Support MCV, MCH,
Vector Images 95-99 83 95 N/A 200 (20)
Machines Images
ANNs(CNN, | All CBC, Age, (25)
XGBoost, Sex 85-99.3 85-99.3 81-99.3 0.84- 8693-
CatBoost) 0.96 31,311

4.2 Al-Based Diagnostic Indices
Development of New Indices (e.g., Matos &
Carvalho Index)

The index creation with the help of Al is based on
optimization of hematologic formulas. Matos and
Carvalho Index (MCI) = 1.91(RBC) + 0.44(MCHC)
with a cutoff of 23.85 used to identify carriers with a
sensitivity of 99.3%. It was based on 106 patients and
tuned with ROC analysis on 227 patients and uses
ROC analysis. MultiThal-Classifier (M-THAL) is an
XGBoost-based classifier with sensitivity of 90%
when used to identify normocytic, microcytic
thalassaemia, iron deficiency and normals. It has 14
CBC features, with SHAP ranking features such as
MCV. The index, TVGH-NYCU, which is driven by

ML, has an AUC of 0.76 in adults. These indices take

advantage of regular tests, and do not rely on genetics
[28]

Traditional Indices Comparisons

Conventional indices such as Mentzer have 94%
sensitivity but have overlap issues. Green & King
capture 97% AUC but fail to capture normocytic
cases. The sensitivity of Al indices such as MCI is
enhanced to 99%, and the false positives are reduced
by 15%. GBoost models achieved an AUC of 99%,
which is much higher than the 75% observed in SCS
BTT. CatBoost is able to predict beta-thalassaemia
with 80% accuracy in multi-class, which is better

than  formulas of 0%  sensitivity [,

Table 3: Comparative Performance of Al-Based and Traditional Diagnostic Indices for thalassaemia

Index Type | Sensitivity (%) | Specificity (%) | AUC Limitations Citations
Mentzer )
(traditional) 94 75 0.93 Overlaps with IDA (18)
Green and King S
(traditional) 97 91 0.97 Normocytic misses 20)
Computation
M-Thal (Al) 9 98 0.94 i tensive (25)
SCSBTT
(traditional) 64 79 N/A Low accuracy (26)
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4.3 Deep Learning Approaches

Deep learning (DL), a subfield of machine learning,
which uses multi-layer neural networks to
automatically learn hierarchical feature
representations from raw data. Unlike traditional
machine learning, where human experts manually
design or select features, DL models can internally
optimize which features matter most. In haemotology
and diagnostics, DL has been increasingly applied,
from analyzing molecular data to automating
cytomorphology and interpreting lab results 21,

DL is particularly promising for thalassaemia
diagnosis because it can integrate morphological
information (e.g. images of red blood cells) with
guantitative laboratory data (e.g. CBC parameters)
as learning nonlinear interactions is difficult with
human-designed indices.

Convolutional Neural Networks (CNN)

Deep convolutional neural networks have been
applied to thalassaemia screening by learning
complex, non-linear patterns in standard blood count
data (and sometimes images) that traditional
formulaes cannot capture. In practice, CNNs often far
outperform simple indices. For example, Nasir et al.
(2025) applied a CNN to B-thalassaemia data and
reported ~98.1% accuracy on a private clinical
dataset. Similarly, another study trained a CNN on
288 Sri Lankan a-thalassemic cases and achieved
~85% accuracy (with AUC=0.95) , notably higher
than any classical index on the same data. These
models automatically combine multiple CBC features
(MCV, MCH, RBC, etc.) through learned filters,
enabling robust classification of carriers vs healthy
controls. In summary, CNNs have demonstrated very
high sensitivity and specificity in recent studies, often
reducing missed cases relative to older methods [,

XGBoost

Extreme Gradient Boosting (XGBoost) is an
ensemble tree-based algorithm well-suited to tabular
haemotology data. It builds many decision trees
sequentially, capturing feature interactions that
simpler models might miss. In thalassaemia
screening, XGBoost has achieved near-perfect
accuracy in several reports. For instance, Nasir et al.
found that XGBoost reached 99.34% accuracy for a-
thalassaemia on their private dataset. Another study
combining CBC and HPLC features reported
XGBoost training accuracy of ~99.5% (with >99%
test accuracy) B, outperforming SVM. These results
suggest XGBoost can read subtle patterns (e.g. in
MCV, MCH, HbA2 levels) with remarkable
precision. In practice, XGBoost is often as accurate

or more accurate than deep neural networks in this
domain, while requiring less parameter tuning for
smaller datasets. Its strengths are high predictive
power on structured data and robustness to collinear
features; its drawback is that it still needs adequate
data and careful tuning to avoid overfitting.

Public vs. Private Datasets

Data source has a major impact on Al performance.
Publicly available thalassaemia datasets are typically
small (often <1000 samples) and may lack detailed
features, whereas private clinical cohorts can be
much larger and richer. Nasir et al. explicitly
compared models on public vs. private data and
found far higher accuracy on the private set . They
attributed this to greater sample size and higher-
quality measurements in the private data. For
example, their CNN/XGBoost models achieved ~98—
99% accuracy on a large hospital dataset, whereas
training on smaller published datasets yielded weaker
results. Likewise, Christensen et al. trained a CNN on
only 288 patient records from Sri Lanka and achieved
“only” ~85% accuracy, far below the ~98% seen with
larger data. These examples underscore that modern
Al models benefit immensely from large, diverse
cohorts. In practice, a deep learning model trained on
one hospital’s dataset may not generalize to another
region unless trained or validated; hence, data-
sharing and multi-center studies are needed to
achieve robust, widely applicable algorithms [321,

5. Comparative Analysis of Studies

Recent literature shows that Al-based classifiers
consistently outperform traditional haematological
indices in thalassaemia screening. Traditional
formulae like the Mentzer or Shine-Lal index yield
modest sensitivity/specificity (e.g. Mentzer index
~70-95% sensitivity ), leading to frequent
misclassification. In contrast, ML and DL models
typically achieve much higher accuracy. Numerous
studies  found many modern algorithms with
accuracy in the mid-90% or higher. For example, in
multiple recent reports, Al systems reached >98%
accuracy. One CNN-based model (using image and
CBC features) achieved 99% accuracy with 100%
sensitivity. In practice, ML/DL methods often detect
virtually all carrier cases that simpler indices would
miss.

Key comparative findings include:

Accuracy and AUC: Al models (SVM, RF,
XGBoost, CNN, etc.) generally report 90-99%
accuracy. For instance, Nasir et al. (2025) report
98.10% accuracy (CNN) and 99.34% (XGBoost) on
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large datasets. In comparison, classical indices
typically generated accuracies around 75-90% (and
often a trade-off between sensitivity and specificity).
Several studies have reported that machine learning
approaches can achieve remarkably high accuracy in
detecting B-thalassaemia traits, often reaching or even
exceeding 95%. In some cases, these advanced

models demonstrate near-perfect performance,
underscoring their strong capability to distinguish
thalassaemia from other anaemias and their claim as
powerful tools in clinical diagnostics. In summary,
ML and DL approaches significantly reduce both
false negatives and false positives relative to
traditional scoring.

Table 4: study results

Model Dataset / Focus Reported Accuracy Source

CNN & XGBoost a- & B-thalassaemia; public vs private | 98.10 % (CNN), 99.34 % | [30]
datasets (XGBoost)

CNN 288 a-thalassaemia cases (small 85 % [30]
dataset)

CNN + PCA B-thalassaemia 96 % [33]

Federated Learning 5,066 B-thalassaemia patients 92.38 % [34]

Ensemble (multiple o + B detection (5,066 cases) 93 % [35]

classifiers)

Hybrid CNN (images +
CBC)

Blood-smear + CBC data

99 % (100 % sensitivity) [36]

Strengths: For Al classification, multiple features
are simultaneously integrated, capturing subtle
patterns. They can be trained to improve overall
accuracy, sensitivity and specificity. Many studies
report high sensitivity (often >95%) e.g. the CNN
image-based model achieved 100% sensitivity.
Ensemble methods like XGBoost combine weak
learners to reach >99% accuracy 31 robustly
distinguishing o and B variants. ML/DL can also be
updated with new data, making them adaptable to
different populations. Overall, these methods
dramatically reduce misdiagnosis and the risk of
giving inappropriate iron therapy to unrecognized
thalassaemia carriers.

Weaknesses: The main limitations of these studies
are data quality and size. Many models were
trained on relatively small or homogeneous datasets,
raising overfitting concerns. For example, deep
neural net achieved 96% accuracy but the authors
noted its small training set and overfitting risk 41,
Several studies could not distinguish thalassaemia
subtypes due to incomplete labeling. Furthermore,
while neural nets (CNN/ANN) often perform best,
they are “black boxes” with low interpretability;
simpler indices, though less accurate, are transparent.
Traditional indices still have the advantage of
requiring no training and being extremely easy to

compute, but they sacrifice accuracy (e.g. Mentzer’s
index had only ~70% sensitivity ). In summary, Al
methods are powerful but depend on large,
representative data and careful validation. When data
are limited, even high-performing models can
degrade; this is why some studies report lower
accuracy (e.g. 85% in the small Sri Lankan study ).

Studies have shown that while traditional indices
demonstrate high diagnostic efficiency for f-
thalassaemia trait detection, modern machine learning
models often achieve even greater accuracy.
Conventional approaches like the Mentzer index
provide reliable results, yet Al-based models
consistently surpass them in precision and overall
performance, highlighting the growing potential of
intelligent algorithms in improving diagnostic
outcomes. . In practice, this means Al approaches
correctly classify far more carriers. In summary,
across multiple recent high-impact studies, Al/ML
methods consistently outperform traditional
hematologic indices in accuracy and sensitivity, at
the cost of requiring more data and computational
effort. These methods’ strengths (high accuracy,
flexibility, ability to handle complex feature sets)
make them promising for screening programs, while
their weaknesses (data-dependence, explainability)
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are being addressed through larger studies and
interpretable models.

6. Clinical applications and implications

Early diagnosis, carrier screening, and optimized
monitoring are central to reducing morbidity and
preventing new affected births. Artificial intelligence
(Al) and machine learning (ML) offer promising
enhancements to conventional approaches. Below is a
structured discussion of clinical applications,
implications, and the challenges/limitations of Al in
thalassaemia care.

6.1 Al in Routine Screening Programme

Routine screening programme for thalassaemia
carriers or mild cases historically rely on hematologic
indices (CBC, RBC indices), iron studies,
haemoglobin electrophoresis / HPLC, and, where
available, DNA testing. AI/ML tools can augment or
partially automate the early triage stage to flag
suspected carriers or disease.

Several studies have demonstrated that ML models
using routine CBC features (e.g., MCV, MCH, RDW,
RBC count) can distinguish B-thalassaemia trait from
IDA with high accuracy. For instance, a study of 396
individuals (216 IDA, 180 p-thalassaemia minor)
showed that ANN and decision tree models
outperformed discriminant indices in differentiation
using CBC alone B°l. Another more recent review
collated many ML models achieving sensitivities and
specificities over 90% in distinguishing thalassaemia
carriers from non-carriers or IDA controls. In
addition, MultiThal, a multiclass machine learning
classifier, has been proposed for more refined
diagnosis and subtype classification of thalassaemia
using CBC data 8, A further model, designed for
pregnant women, used a clinical indicator—based ML
algorithm to predict thalassaemia risk and achieved
good discrimination performance.

Beyond tabular indices, image-based Al has been
applied. Deep learning on Hb electrophoresis strip
images has been used for automatic detection of
abnormal bands. For instance in one study, using 524
electrophoresis images, CNN models (e.g.
InceptionV3) achieved detection accuracy ~95.8%
for distinguishing thalassaemia vs normal patterns
7, Thus, Al may accelerate and standardize
interpretation of electrophoresis, reducing human
error and burden.

In a-thalassaemia, classification using ML models
has been explored. A study in Sri Lanka used CBC
and gender features and applied ML to distinguish
silent and non-carrier states of a-thalassaemia trait.
Another experiment explored hybrid deep networks

(transfer learning with feature fusion) achieving
precision > 94% for thalassaemia detection [,

Thus, in screening programmes, Al holds the
potential to filter large numbers of low-risk
individuals and flag high-risk ones for further
confirmatory workup, increasing throughput and
reducing cost burdens.

6.2 Avoiding Misdiagnosis and Unnecessary Iron
Therapy

A clinical issue is misdiagnosis of thalassaemia with
IDA which might result in wunneccesary iron
administration causing Iron overload, oxidative
damage. The Al methods assist in decreasing the
misclassification ~ through  the  addition  of
multidimensional characteristics other than the
straightforward indices. As an example, standard
indices (e.g. Mentzer, RDW*MCH) do not work well
in overlapping phenotypes. By comparison, multi-
classifier models that combine several CBC
characteristics have demonstrated a high diagnostic
sensitivity and reduced false positive results %1, One
of them is the study named “Predicting thalassaemia
Using Feature Selection Techniques” in which nine
classification algorithms, as well as several feature
selection methods, were evaluated; the authors
established the high discrimination of carrier and
non-carrier conditions and shed light on the
shortcomings of prior single-metric indices. In a
multiclass classification study, the models were
trained to identify both o and [-thalassaemia
(major/minor) on the same model this was to ensure
that mixed phenotypes are not misdiagnosed.
Therefore, Al can serve as a protective measure that
will decrease under- and over-treatment.

6.3 Genetic Counselling and Carrier Detection by
Al

The control strategies include genetic counselling and
carrier detection. These can be improved with the
help of Al and bioinformatics tools in the following
ways:

Carrier identification on sequencing data: Al can
help variant calling, prediction of pathogenicity,
structural variant detection, as well as genotype
structural variant correlation. Indicatively, more
recent molecular reviews have started covering the
incorporation of Al into gene editing, version
interpretation, and epigenetic  insights into
thalassaemia scenarios 1%,

Risk estimation and phenotypic prediction: Given
a genotype (or pair of variants), Al models may help
predict disease severity (trait, intermedia, major) by
incorporating modifier genes, regulatory variants or
epigenetic features.
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Counselling support tools: Mobile or web-based
platforms embedding AI modules can deliver
personalized counselling.

By integrating genotype, phenotype, and
demographic data, Al may support more specific
carrier detection and assist in counselling couples
with more precise risk estimates.

6.4 Al in Monitoring Complications and
Treatment Response

Once a diagnosis is established, thalassaemia patients
require ongoing surveillance and management. Al
can add value in:

e Predicting transfusion requirements or
trends: Time-series ML models may forecast
when a patient will require increased transfusion
intensity, enabling earlier intervention.

e Estimating iron overload non-invasively: MRI
T2 images are standard for quantifying
cardiac/liver iron, but computational methods
may enhance analysis. For instance,
CHMMOTv] dataset of cardiac and hepatic
MRI images in thalassaemia provides a resource
for training Al models to estimate organ iron
burden . Al models may integrate lab trends,
imaging, and demographics to better personalize
chelation therapy.

e Predicting complications: Endocrinopathies,
cardiac disease, liver fibrosis often develop
gradually. Risk stratification Al models could
flag patients at higher risk requiring closer
follow-up.

e Assessing treatment response: For chelators,
gene therapy, or novel agents, Al models can
analyze composite biomarkers to distinguish
responders vs nonresponders earlier, potentially
guiding therapy adjustments.

6.5 Clinical Implications

Earlier and more accurate diagnosis: Al tools can

shorten the diagnostic delay, reducing end-organ

damage and morbidity.

Reduced misdiagnosis and harm: Better

discrimination avoids unnecessary iron therapy or

delayed diagnosis.

Personalization: Al enables stratified risk and

monitoring plans.

Resource efficiency: Automating parts of

interpretation reduces the burden on specialist

clinicians and laboratories.

6.5.1 Economic Implications

Al use as a filter can save us on the number of

confirmatory tests (HPLC, DNA sequencing) that are

costly to carry out.

Preventing the unnecessary iron therapy or
overtreatment helps decrease direct and indirect
healthcare expenses.

Laboratory automation (smear reading, interpretation
of electrophoresis) saves on labor time and
turnaround.

These expenses comprise model development of Al,
infrastructure (computing, storage), validation, as
well as regulatory compliance, which should be
traded off against long-term savings. Cost-benefit
models in most contexts are necessary to gain
adoption particularly in low and middle income
nations with constrained budgets.

7. Challenges and Limitations

Quiality of Data and Sample Diversity

Most Al research is retrospective, small, single-centre
and based on quite homogeneous populations
(ethnicity, mutation spectra). This restricts the
general approach and external validity. Missing
values, measurement error (different CBC machines,
reagents), or labeling noise can lead to datasets with
missing values, variability in measures, or which
worsen the robustness of the models. The models
cannot effectively deal with edge cases because the
rare genotypes or mixed phenotypes (coexistent IDA
+ trait) are not well represented in the model.
Overfitting and Bias

The deep models or complex ML are prone to
overfitting, particularly when the sample sizes are
small; the performance can deteriorate when using
external data. Its introduction may occur because of
stratification of populations (populations trained on a
single ethnicity may not work well on a different
population), selection bias (between hospital and
community samples), and prevalence bias (lop-sided
classes). The absence of transparency (black boxes)
can cause a decrease in clinical trust or the presence
of hidden biases.

Integration into Healthcare Systems

Al tools must interoperate with laboratory
information systems (LIS), EHRs, and hospital
workflows. Without seamless integration, uptake is
limited. Clinician acceptance requires that Al outputs
be interpretable, reliable, and delivered in actionable
form at the point of care. Maintenance, updates,
retraining and version control over time are necessary
to keep models valid.

Ethical, Privacy, and Regulatory lIssues

Use of genetic data, imaging, and identifying health
data demands strict data security, de-identification,
and informed consent frameworks. Regulatory
oversight (e.g., as medical devices or decision
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support tools) may require validation trials, audits,
and approvals which differ across jurisdictions.
Clinicians and patients may demand transparent
reasoning rather than black box predictions.
Liability:Legal and ethical frameworks must be
established for Al mistakes

Equity and Accessibility

Many high-prevalence regions are resource-limited.
Al tools requiring advanced computation, stable
internet, or high-resolution imaging may not be
feasible. Implementation costs, training of personnel,
maintenance, and infrastructure may not be
affordable in low-income settings. If Al models are
developed using data from high-income settings and
directly imported to underprivilaged populations,
disparities may worsen.

Model Generalisability and Performance Inflation

Although several studies report diagnostic accuracies
exceeding 95%, these results are often obtained under
controlled conditions using relatively homogeneous
or single-centre datasets. The lack of large, multi-
centre external validation raises concerns regarding
overfitting and real-world generalisability. Therefore,
high reported accuracy should be interpreted
cautiously until prospective clinical validation and
regulatory approval pathways are established.

8. Future Perspectives
8.1 Use of Al in Large-Scale Screening Programs

Putting artificial intelligence into big testing
programs has greatly changed diseases detection,
making things reiable, fast, and versatile. Computer
programs that based on deep learning model have
been better at predicting diabetes and prediabetes,
which means fewer pointless tests and overlooked
sicknesses. Using artificial intelligence in large breast
cancer tests has kept the right diagnosis rate while
greatly lowering the load of work, cutting the need
for another reader. In the same way, Al based lung
cancer tests help radiologists feel confident by giving
other readings of lung lumps and finding health
problems related to smoking. Computer learning
systems is also being used for big virtual drug tests,
grouping chemicals well and sorting out correct and
wrong results®?, Also, deep learning methods in
diabetic eye disease tests have been accurate, making
things easier to grow and better using resources in
public health areas. Artificial intelligence is
promising for making work better through sorting
tools, improving how things work, lowering false
negatives, and keeping the same detection rate in
tests for everyone.

8.2 Combining Al with Genetic Testing for
Precision Medicine

Artificial intelligence has sped up the progress of
tailored medical care by making genetic tests and
data analysis better. By adding Al, complicated
genetic information can be turned into useful
understandings, which helps with personalized
diagnoses and treatments. Using machine learning to
mix health and genetic details has made guesses
about how people will react to medicine better, like in
the production of seizure medicines. Machine
learning programs have gotten total model accuracy
up to 88%, making choices about treatment and
predictions better. Al-based drug response analyses
also make custom-made medicine plans easier, which
makes treatments work better and lowers bad side
effects 4. Also, using Al to mix different kinds of
biological information helps find diseases early,
change treatments for each person, and make drug
creation processes work better. Overall, these uses
highlight how Al is changing tailored medicine,
helping with the ongoing big change in healthcare.

8.3 Mobile/Point-of-Care Al Tools for Low-
Resource Settings

New improvements highlight how helpful artificial
intelligence could be in portable and on-site medical
tools, mainly for places with few resources and
urgent situations. Al make processes work better and
improve accuracy of diagnoses in poorer countries.
Computer programs that learn deeply can help people
who respond to emergencies by making it easier to
find diseases right away using tools that can be
carried around. Even with these improvements, there
are still problems with how well they work in
different situations, how easy it is to get data, and
making sure POCUS tools and programs are all the
same M2, Thinking about what is right and wrong,
how well patients follow instructions, and making
sure everyone has fair access are also very important
things that affect whether these tools are used
successful. Even so, portable medical tests that use
Al are still a reliable way to make healthcare more
available everywhere.

8.4 Potential Expansion to Other
haemoglobinopathies

Conditions such as B-thalassaemia and sickle cell
disease are widespread inherited problems globally
and lead to serious health concerns. Although bone
marrow transplants represent the sole method for
completely fixing them, there aren't sufficient
individuals available for donation. Another potential
method involves gene therapy, which might introduce
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genes, stop them, or accurately adjust areas
influencing globin  “I1.  However, it remains
challenging to alter cells sufficiently and guarantee
that blood stem cells continue multiplying over an
extended period. Looking ahead, we must discover
improved methods to render gene therapy more
affordable and simpler to manufacture, while also
addressing ethical and realistic concerns. These
innovative concepts may assist in decreasing the
quantity of individuals becoming ill and dying due to
inherited blood conditions across the globe 141,

Conclusion:

The field of Artificial Intelligence has demonstrated
enormous potential in transforming the diagnostic
environment of thalassaemia. Although traditional
indices and methods of molecular analysis still hold a
core role, Al-based methods introduce a whole new
accuracy, efficiency, and availability of the process.
Clinicians are now able to diagnose thalassaemia
carriers more efficiently, through machine learning
and deep learning models, and avoid cases of
misdiagnosis and unwarranted treatment. The
application of Al in clinical practice also creates new
opportunities in terms of round-the-clock monitoring,
genetic counseling, and screening of a large
population. Nevertheless, to be able to put these
innovations into practical use, the problem of
standardization of data, transparency of algorithms,
and their ethical application should be resolved. Al
must not be considered the alternative to molecular
testing; it can be regarded as the supplementary tool
that improves diagnostic accuracy and expands the
access to early diagnosis, particularly in the resource-
limited setting. As the world continues to evolve and
Al is implemented responsibly, it is bound to be a
pillar in the battle against thalassaemia in the world.
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