Unraveling Ankylosing Spondylitis From Immunopathogenesis to Modern Treatment Approaches
Keywords:
Ankylosing spondylitis (AS), Axial spondyloarthritis, HLA-B27, Biological therapy, Targeted therapy, Immunopathogenesis, pro-inflammatory cytokinesAbstract
Ankylosing spondylitis is a chronic inflammatory rheumatic disease that primarily affects the axial skeleton, resulting in back pain and progressive stiffness. The purpose of this study is to provide an integrated observation in the form of pathophysiology, clinical criteria, and available medical methods. Environmental factors and genetic susceptibility, mainly HLA-B27, are an intricate interaction in AS Etiology. Increased knowledge about immunopathogenesis has added the role of pro-inflammatory cytokines such as IL-17 and TNF-α in the devastating course of the disease. Early diagnosis is indicated but immensely challenging, as the onset is gradual and presenting symptoms are futile. MRI and other radiographic imaging, along with genetic workup and biomarkers, are of most significance in initial identification. With advances in biological therapies with the potential to block various inflammatory cascades, there is hope of improved outcomes and quality of life in patients. Non-pharmacological management in the guise of physiotherapy and lifestyle modification continues to be an integral part of the comprehensive management plan. The review also references the necessity of utilizing a multidisciplinary approach in optimizing patient outcomes in the context of recent advances in the etiology and treatment of AS.
References
1. He, W., et al., Global research trends in biological therapy for ankylosing spondylitis: A comprehensive visualization and bibliometric study (2004–2023). Human Vaccines & Immunotherapeutics, 2025. 21(1): p. 2445900.
2. Costantino, F., M. Bréban, and H.J. Garchon, Genetics and Functional Genomics of Spondyloarthritis. Frontiers in Immunology, 2018. 9.
3. Zhang, S., W. Jiang-bi, and L. Wang, Structural Plasticity of Dendritic Spines. Frontiers in Biology, 2010. 5(1): p. 48-58.
4. Hamroun, S., et al., AB0920 BAMBOO SPINE PHENOTYPE ASSOCIATED WITH A HIGHER DISEASE BURDEN IN SPONDYLOARTHRITIS PATIENTS: AN ANCILLARY ANALYSIS OF THE ASAS-COMOSPA STUDY. Annals of the Rheumatic Diseases, 2024. 83: p. 1768.
5. Katsumi, T., et al., Identification of Microbial Antigens in Liver Tissues Involved in the Pathogenesis of Primary Biliary Cholangitis Using 16S rRNA Metagenome Analysis. Plos One, 2024. 19(8): p. e0308912.
6. Păsăran, E.-D., et al., An Actual Insight into the Pathogenic Pathways of Ankylosing Spondylitis. Current Issues in Molecular Biology, 2024. 46(11): p. 12800-12812.
7. Nagit, R.-E., E. Rezus, and P. Cianga, Exploring the Pathogenesis of Spondylarthritis beyond HLA-B27: A Descriptive Review. International Journal of Molecular Sciences, 2024. 25(11): p. 6081.
8. Prevalence Of Seronegative Spondyloarthropathies in Young Adults. African Journal of Biomedical Research, 2024. 27(3): p. 2339-2344.
9. Alfaifi, A., Association between non-pharmacological therapy and healthcare use and expenditure of patients with diabetes mellitus. Saudi Pharmaceutical Journal, 2023. 31(8): p. 101685.
10. Gandolfi, M., et al., Improvement in motor symptoms, physical fatigue, and self-rated change perception in functional motor disorders: a prospective cohort study of a 12-week telemedicine program. Journal of Neurology, 2022. 269(11): p. 5940-5953.
11. Tian, W., The Effect of Anaesthesia on Oral Fibreoptic Tracheal Intubation in a Patient of Ankylosing Spondylitis. Online Journal of Complementary & Alternative Medicine, 2020. 4(5).
12. Jung, Y.-S., et al., Evolving trends in the prevalence and treatment of ankylosing spondylitis in Korea from 2010 to 2023: a population-based study. Scientific Reports, 2025. 15(1): p. 2561.
13. Chhotaray, S. and S. Jal, An Alternate Strategy for the Regulation of Inflammatory and Autoimmune Disorders: The Role of Gut Microbiota and Dietary Metabolites, in Nutrition Controversies and Advances in Autoimmune Disease. 2024, IGI Global. p. 372-390.
14. Bowness, P., Hla-B27. Annual Review of Immunology, 2015. 33(1): p. 29-48.
15. Braun, J. and J. Sieper, Fifty years after the discovery of the association of HLA B27 with ankylosing spondylitis. RMD open, 2023. 9(3): p. e003102.
16. Sharma, V., et al., HLA-B27 Frequency and its Association with Ankylosing Spondylitis in Indian Population: A Multi-City Analysis from a Single-Center Study. Asian Journal of Biochemistry, Genetics and Molecular Biology. 16(10).
17. Sheehan, N.J., The ramifications of HLA-B27. Journal of the Royal Society of Medicine, 2004. 97(1): p. 10-14.
18. Colbert, R.A., et al., HLA‑B27 misfolding and spondyloarthropathies. Prion, 2009. 3(1): p. 15-26.
19. Chatzikyriakidou, A., P.V. Voulgari, and A.A. Drosos, What is the role of HLA-B27 in spondyloarthropathies? Autoimmunity reviews, 2011. 10(8): p. 464-468.
20. Chognard, G., et al., The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation. PloS one, 2014. 9(2): p. e89092.
21. Sengupta, A., et al., Disturbance triggers non-linear microbe–environment feedbacks. Biogeosciences, 2021. 18(16): p. 4773-4789.
22. Rook, G.A., The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. Frontiers in Allergy, 2023. 4: p. 1220481.
23. Nguyen, J., J. Lara-Gutiérrez, and R. Stocker, Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS microbiology reviews, 2021. 45(4): p. fuaa068.
24. Mauro, D., et al., Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nature Reviews Rheumatology, 2021. 17(7): p. 387-404.
25. Smith, J.A., Update on ankylosing spondylitis: current concepts in pathogenesis. Current allergy and asthma reports, 2015. 15: p. 1-9.
26. Rashid, T. and A. Ebringer, Ankylosing spondylitis is linked to Klebsiella—the evidence. Clinical rheumatology, 2007. 26: p. 858-864.
27. Costello, M.-E., et al., Microbes, the gut and ankylosing spondylitis. Arthritis research & therapy, 2013. 15: p. 1-12.
28. Costello, M.E., et al., Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis & rheumatology, 2015. 67(3): p. 686-691.
29. Cardoneanu, A., et al., Characteristics of the intestinal microbiome in ankylosing spondylitis. Experimental and therapeutic medicine, 2021. 22(1): p. 676.
30. Csango, P., et al., Chlamydia trachomatis serology in ankylosing spondylitis. Clinical rheumatology, 1987. 6: p. 384-390.
31. De Nobili, M., et al., Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biology and Biochemistry, 2001. 33(9): p. 1163-1170.
32. Voruganti, A. and P. Bowness, New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology, 2020. 161(2): p. 94-102.
33. Watad, A., et al., The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Frontiers in immunology, 2018. 9: p. 2668.
34. Menegatti, S., E. Bianchi, and L. Rogge, Anti-TNF therapy in spondyloarthritis and related diseases, impact on the immune system and prediction of treatment responses. Frontiers in immunology, 2019. 10: p. 382.
35. Liang, T., et al., STAT3 and SPI1, may lead to the immune system dysregulation and heterotopic ossification in ankylosing spondylitis. BMC immunology, 2022. 23(1): p. 3.
36. Shilling, R.A. and D.S. Wilkes, Role of Th17 Cells and IL-17 in Lung Transplant Rejection. Seminars in Immunopathology, 2011. 33(2): p. 129-134.
37. Pedersen, S.J. and W.P. Maksymowych, The pathogenesis of ankylosing spondylitis: an update. Current rheumatology reports, 2019. 21(10): p. 58.
38. Kucuksezer, U.C., et al., The role of natural killer cells in autoimmune diseases. Frontiers in immunology, 2021. 12: p. 622306.
39. Chia, D.J. and T. Lu, Update on Macrophages and Innate Immunity in Scleroderma. Current Opinion in Rheumatology, 2015. 27(6): p. 530-536.
40. Guggino, G., et al., Inflammasome activation in ankylosing spondylitis is associated with gut dysbiosis. Arthritis & Rheumatology, 2021. 73(7): p. 1189-1199.
41. Yang, L., et al., A possible role of intestinal microbiota in the pathogenesis of ankylosing spondylitis. International journal of molecular sciences, 2016. 17(12): p. 2126.
42. Harkins, P., et al., ‘All disease begins in the gut’—the role of the intestinal microbiome in ankylosing spondylitis. Rheumatology Advances in Practice, 2021. 5(3): p. rkab063.
43. Kabeerdoss, J., P. Sandhya, and D. Danda, Gut inflammation and microbiome in spondyloarthritis. Rheumatology international, 2016. 36: p. 457-468.
44. Rizzo, A., et al., Role of subclinical gut inflammation in the pathogenesis of spondyloarthritis. Frontiers in medicine, 2018. 5: p. 63.
45. Furst, A. and T. Gill, Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Practice & Research Clinical Rheumatology, 2024: p. 101961.
46. Ferdoutsis, M., et al., Diffuse Interstitial Lung Disease as an Early Manifestation of Ankylosing Spondylitis. Respiration, 1995. 62(5): p. 286-289.
47. Momeni, M., N.A. Taylor, and M. Tehrani, Cardiopulmonary Manifestations of Ankylosing Spondylitis. International Journal of Rheumatology, 2011. 2011: p. 1-6.
48. Moon, K.H. and Y.T. Kim, Medical Treatment of Ankylosing Spondylitis. Hip & Pelvis, 2014. 26(3): p. 129-135.
49. Kain, T., et al., Evidence‐based Recommendations for the Diagnosis of Ankylosing Spondylitis: Results From the Australian 3E Initiative in Rheumatology. The Medical Journal of Australia, 2008. 188(4): p. 235-237.
50. Law, L.F. and H.M. Haftel, Shoulder, Knee, and Hip Pain as Initial Symptoms of Juvenile Ankylosing Spondylitis: A Case Report. Journal of Orthopaedic and Sports Physical Therapy, 1998. 27(2): p. 167-172.
51. Agrawal, R., et al., Current Approach in Diagnosis and Management of Anterior Uveitis. Indian Journal of Ophthalmology, 2010. 58(1): p. 11.
52. Baaten, C.C.F.M.J., S. Vondenhoff, and H. Noels, Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circulation Research, 2023. 132(8): p. 970-992.
53. Dinçer, Ü., et al., The Pulmonary Involvement in Rheumatic Diseases: Pulmonary Effects of Ankylosing Spondylitis and Its Impact on Functionality and Quality of Life. The Tohoku Journal of Experimental Medicine, 2007. 212(4): p. 423-430.
54. Ahmed∥, M., Extra-Intestinal Features of Crohn’s Disease. 2021.
55. Lorentzon, M., H. Litsne, and K.F. Axelsson, The Significance of Recent Fracture Location for Imminent Risk of Hip and Vertebral Fractures—a Nationwide Cohort Study on Older Adults in Sweden. Osteoporosis International, 2024. 35(6): p. 1077-1087.
56. Granados, R., et al., Enthesitis Indices Identify Different Patients With This Characteristic in Axial and Peripheral Spondyloarthritis and Also in Psoriatic Arthritis: ASAS-PerSpA Data. Arthritis Research & Therapy, 2023. 25(1).
57. Özçelik, E., et al., Sacroiliitis in Familial Mediterranean Fever: A Rare Joint Involvement of the Disease. Journal of Paediatrics and Child Health, 2024. 60(10): p. 511-515.
58. Reinders, A. and M.J.V. Wyk, Bamboo Spine – X-Ray Findings of Ankylosing Spondylitis Revisited. South African Journal of Radiology, 2012. 16(3): p. 111-113.
59. Tatsumura, M., et al., Sacroiliac Joint Ankylosis Decreases Intervertebral Fusion Rate in L5/S1 Single Intervertebral Transforaminal Lumbar Interbody Fusion. Cureus, 2023.
60. Kim, D.H., S.W. Kim, and S.M. Lee, Complete Fusion of Three Lumbar Vertebral Bodies in Ankylosing Spondylitis. Korean Journal of Neurotrauma, 2020. 16.
61. O’Neill, J., et al., Axial Spondyloarthritis: Does Magnetic Resonance Imaging Classification Improve Report Interpretation. JCR Journal of Clinical Rheumatology, 2024. 30(4): p. 145-150.
62. Heijde, D.v.d., et al., Limited Radiographic Progression and Sustained Reductions in MRI Inflammation in Patients With Axial Spondyloarthritis: 4-Year Imaging Outcomes From the RAPID-axSpA Phase III Randomised Trial. Annals of the Rheumatic Diseases, 2018. 77(5): p. 699-705.
63. Robinson, P.C., R. Sengupta, and S. Siebert, Non-Radiographic Axial Spondyloarthritis (Nr-axSpA): Advances in Classification, Imaging and Therapy. Rheumatology and Therapy, 2019. 6(2): p. 165-177.
64. Adelsmayr, G., et al., The Value of MRI Compared to Conventional Radiography in Analysing Morphologic Changes in the Spine in Axial Spondyloarthritis. Insights Into Imaging, 2021. 12(1).
65. Wang, D.m., et al., Comparison of Sacroiliac Biopsies and Magnetic Resonance Imaging Examinations in Non-Radiographic Axial Spondyloarthritis. 2021.
66. Zejden, A. and A.G. Jurik, Anatomy of the Sacroiliac Joints in Children and Adolescents by Computed Tomography. Pediatric Rheumatology, 2017. 15(1).
67. Florescu, A., et al., The Role of Clinical and Ultrasound Enthesitis Scores in Ankylosing Spondylitis. Life, 2021. 11(3): p. 218.
68. Zeng, Y., et al., Human HLA‐B27 Typing Using the BD™ HLA‐B27 Kit on the BD FACSVia™ System: A Multicenter Study. Cytometry Part B Clinical Cytometry, 2018. 94(5): p. 807-813.
69. Kara, M., G. Alp, and A.M. Koç, Diagnostic Difficulties in Polymyalgia Rheumatica Cases With Normal Erythrocyte Sedimentation Rate and C-Reactive Protein Values. Medicine, 2023. 102(39): p. e35385.
70. Jukic, A., et al., Calprotectin: From Biomarker to Biological Function. Gut, 2021. 70(10): p. 1978-1988.
71. Oliva, F., et al., The Diffuse Idiopathic Skeletal Hyperostosis (DISH): A Literature Review on the Rehabilitation Treatment. Muscles Ligaments and Tendons Journal, 2023. 13(04): p. 660.
72. Taurog, J.D., A. Chhabra, and R.A. Colbert, Ankylosing Spondylitis and Axial Spondyloarthritis. New England Journal of Medicine, 2016. 374(26): p. 2563-2574.
73. Rodríguez, V.R. and D. Poddubnyy, Old and New Treatment Targets in Axial Spondyloarthritis. RMD Open, 2015. 1(Suppl 1): p. e000054.
74. Sounthonevat, C., Celecoxib for the Treatment of Ankylosing Spondylitis. Journal of Rheumatology and Arthritic Diseases, 2017. 2(1): p. 1-4.
75. Alanazi, S.S., et al., The Role of Biologic Therapies in Improving Joint Health in Autoimmune Arthritis. 2023.
76. Jang, D.-i., et al., The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 2021. 22(5): p. 2719.
77. Turner-Brannen, E., et al., Inflammatory Cytokines IL-32 and IL-17 Have Common Signaling Intermediates Despite Differential Dependence on TNF-Receptor 1. The Journal of Immunology, 2011. 186(12): p. 7127-7135.

Downloads
Published
License
Copyright (c) 2024 Journal of Interdisciplinary Research in Allied Health and Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
cc BY