Biofilms in the food system: Novel management strategies
Abstract
Biofilms are shielding extracellular matrix constituting glycoprotein and polysaccharides created by microorganisms in order to sustain through hostile environment. In food systems due to inadequate sanitary operations food residues accumulate and provide nutrition and harborage to microorganisms, resulting in biofilm formation. These biofilms provide ideal growth environment that support cellular communication and genetic transferal. These characteristics under controlled conditions make biofilms auspicious for biomass production. This review is primarily focused on biofilm prevention and obstruction techniques for food systems including use cell-signaling inhibition strategies, non-thermal plasma treatments and photocatalysis.
References
1. Al-Tayawi, T. S., Adel, E. M., & Omer, F. H. (2023). An Overview of Biofilm as a Virulence Factor for Bacteria to Survive in the Harsh Environment. International Journal of Medical Science and Clinical Research Studies, 3(06), 1188-1197.
2. Alonso, V. P. P., Harada, A. M. M., & Kabuki, D. Y. (2020). Competitive and/or cooperative interactions of Listeria monocytogenes with Bacillus cereus in dual-species biofilm formation. Frontiers in microbiology, 11, 500982.
3. Amankwah, S., Abdella, K., & Kassa, T. (2021). Bacterial biofilm destruction: A focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnology, science and applications, 161-177.
4. Aranda, F. J., Teruel, J. A., & Ortiz, A. (2023). Recent advances on the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes. Current Opinion in Colloid & Interface Science, 101748.
5. Ashrafi, A. (2023). Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: A comprehensive critical review. Results in Materials, 100402.
6. Asma, S. T., Imre, K., Morar, A., Imre, M., Acaroz, U., Shah, S. R. A., ... & Zhu, K. (2022). Natural strategies as potential weapons against bacterial biofilms. Life, 12(10), 1618.
7. Bai, X., Nakatsu, C. H., & Bhunia, A. K. (2021). Bacterial biofilms and their implications in pathogenesis and food safety. Foods, 10(9), 2117.
8. Bin Hafeez, A., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: an update on classifications and databases. International journal of molecular sciences, 22(21), 11691.
9. Borges, A., Meireles, A., Mergulhão, F., Melo, L., & Simões, M. (2020). Biofilm control with enzymes. In Recent trends in biofilm science and technology (pp. 249-271). Academic Press.
10. Boyce, A., & Walsh, G. (2023). Enzymes for cleaning-in-place in the dairy industry. In Enzymes Beyond Traditional Applications in Dairy Science and Technology (pp. 491-518). Academic Press.
11. Buder, C., Meemken, D., Fürstenberg, R., Langforth, S., Kirse, A., & Langkabel, N. (2023). Drinking Pipes and Nipple Drinkers in Pig Abattoir Lairage Pens—A Source of Zoonotic Pathogens as a Hazard to Meat Safety. Microorganisms, 11(10), 2554.
12. Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial biofilms in the food industry—A comprehensive review. International Journal of Environmental Research and Public Health, 18(04), 2014.
13. Chandel, H., Wang, B., & Verma, M. L. (2022). Control of biofilm formation during food processing. In A Complete Guidebook on Biofilm Study (pp. 199-227). Academic Press.
14. Cheng, Y., Mousavi, Z. E., Pennone, V., Hurley, D., & Butler, F. (2023). Association between the Presence of Resistance Genes and Sanitiser Resistance of Listeria monocytogenes Isolates Recovered from Different Food-Processing Facilities. Microorganisms, 11(12), 2989.
15. Cremer, J., Kaltschmidt, B. P., Kiel, A., Eberhard, J., Schmidt, S., Kaltschmidt, C., ... & Anselmetti, D. (2023). Aging of industrial polypropylene surfaces in detergent solution and its consequences for biofilm formation. Polymers, 15(5), 1247.
16. Deng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical reviews in food science and nutrition, 60(15), 2481-2508.
17. Didehdar, M., Chegini, Z., Tabaeian, S. P., Razavi, S., & Shariati, A. (2022). Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection. Frontiers in Cellular and Infection Microbiology, 12, 930624.
18. Domingues, R. A. C. (2021). Characterization of Novel Acinetobacter Baumannii Phagederived Depolymerases with Antivirulence Properties (Doctoral dissertation, Universidade do Minho (Portugal)).
19. Eghbal, N., Chihib, N. E., & Gharsallaoui, A. (2020). Nisin. In Antimicrobials in food (pp. 309-338). CRC Press.
20. Farahpour, M. R., Pirkhezr, E., Ashrafian, A., & Sonboli, A. (2020). Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomedicine & Pharmacotherapy, 128, 110120.
21. Farjami, A., Jalilzadeh, S., Siahi-Shadbad, M., & Lotfipour, F. (2022). The anti-biofilm activity of hydrogen peroxide against Escherichia coli strain FL-Tbz isolated from a pharmaceutical water system. Journal of Water and Health, 20(10), 1497-1505.
22. Fernandes, S., Gomes, I. B., Simões, M., & Simões, L. C. (2024). Novel chemical-based approaches for biofilm cleaning and disinfection. Current Opinion in Food Science, 101124.
23. c, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., & Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in microbiology, 9, 315815.
24. Gana, J., Gcebe, N., Pierneef, R., Moerane, R., & Adesiyun, A. A. (2022). Multiple-locus variable-number tandem repeat analysis genotypes of Listeria monocytogenes isolated from farms, abattoirs, and retail in Gauteng Province, South Africa. Journal of Food Protection, 85(9), 1249-1257.
25. George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C., & Tu, X. (2021). A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization. Renewable and Sustainable Energy Reviews, 135, 109702.
26. Ghosh, S., Sarkar, T., & Chakraborty, R. (2021). Formation and development of biofilm-an alarming concern in food safety perspectives. Biocatalysis and Agricultural Biotechnology, 38, 102210.
27. Gonçalves, A. S., Leitão, M. M., Simões, M., & Borges, A. (2023). The action of phytochemicals in biofilm control. Natural Product Reports, 40(3), 595-627.
28. Goncalves, E. C., Assis, P. M., Junqueira, L. A., Cola, M., Santos, A. R., Raposo, N. R., & Dutra, R. C. (2020). Citral inhibits the inflammatory response and hyperalgesia in mice: The role of TLR4, TLR2/Dectin-1, and CB2 cannabinoid receptor/ATP-sensitive K+ channel pathways. Journal of natural products, 83(4), 1190-1200.
29. Guo, D., Wang, S., Li, J., Bai, F., Yang, Y., Xu, Y., ... & Shi, C. (2020). The antimicrobial activity of coenzyme Q0 against planktonic and biofilm forms of Cronobacter sakazakii. Food microbiology, 86, 103337.
30. Hemmati, F., Salehi, R., Ghotaslou, R., Samadi Kafil, H., Hasani, A., Gholizadeh, P., ... & Ahangarzadeh Rezaee, M. (2020). Quorum quenching: A potential target for antipseudomonal therapy. Infection and Drug Resistance, 2989-3005.
31. Holah, J. (2023). Hazard control by segregation in food factories. In Hygienic Design of Food Factories (pp. 259-286). Woodhead Publishing.
32. Hosseini, S. (2020). Self-Cleaning surfaces for different purposes: Review of production methods and future prospects. In International conference on materials enginnering and metallurgy.
33. Hsu, H. Y. (2020). UTILIZATION OF EMULSION CHEMISTRIES FOR DELIVERY AND ANTIVIRAL APPLICATION OF CARVACROL.
34. Jing, Z., Lu, Z., Santoro, D., Zhao, Z., Huang, Y., Ke, Y., ... & Sun, W. (2022). Which UV wavelength is the most effective for chlorine-resistant bacteria in terms of the impact of activity, cell membrane and DNA?. Chemical Engineering Journal, 447, 137584.
35. Juszczuk-Kubiak, E. (2024). Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. International Journal of Molecular Sciences, 25(5), 2655.
36. Kawacka, I., Olejnik-Schmidt, A., Schmidt, M., & Sip, A. (2020). Effectiveness of phage-based inhibition of Listeria monocytogenes in food products and food processing environments. Microorganisms, 8(11), 1764.
37. Kernou, O. N., Azzouz, Z., Madani, K., & Rijo, P. (2023). Application of rosmarinic acid with its derivatives in the treatment of microbial pathogens. Molecules, 28(10), 4243.
38. Khalid, S. J., Ain, Q., Khan, S. J., Jalil, A., Siddiqui, M. F., Ahmad, T., ... & Adnan, F. (2022). Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi Journal of Biological Sciences, 29(3), 1673-1682.
39. Khan, F., Jeong, G. J., Tabassum, N., & Kim, Y. M. (2023). Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Communication and Signaling, 21(1), 259.
40. Khan, J., Tarar, S. M., Gul, I., Nawaz, U., & Arshad, M. (2021). Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech, 11, 1-15.
41. Kingkaew, E., & Tanasupawat, S. (2023). 1 Application peptides from of antimicrobial lactic acid bacteria in food preservation and human health. Antimicrobials in Food Science and Technology, 1.
42. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in microbiology, 12, 636588.
43. Lamin, A., Kaksonen, A. H., Cole, I. S., & Chen, X. B. (2022). Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry, 145, 108050.
44. Latag, G. V., Nakamura, T., Palai, D., Mondarte, E. A. Q., & Hayashi, T. (2023). Investigation of three-dimensional bacterial adhesion manner on model organic surfaces using quartz crystal microbalance with energy dissipation monitoring. ACS Applied Bio Materials, 6(3), 1185-1194.
45. Li, W. R., Zhang, Z. Q., Yao, J. W., Liao, K., Zhu, L. P., Shi, Q. S., ... & Xie, X. B. (2022). Diallyl trisulfide attenuates Pseudomonas aeruginosa virulence via inhibiting quorum sensing. International Biodeterioration & Biodegradation, 173, 105463.
46. Liaqat, Atif, Muhammad Farhan Jahangir Chughtai, Adnan Khaliq, Umar Farooq, Muhammad Shahbaz, Ayesha Ali, Kanza Saeed et al. "Applications of biosurfactants in dairy industry." In Applications of Next Generation Biosurfactants in the Food Sector, pp. 509-526. Academic Press, 2023.
47. Ling, H., Lou, X., Luo, Q., He, Z., Sun, M., & Sun, J. (2022). Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharmaceutica Sinica B, 12(12), 4348-4364.
48. Liu, D., Huang, Q., Gu, W., & Zeng, X. A. (2022). A review of bacterial biofilm control by physical strategies. Critical Reviews in Food Science and Nutrition, 62(13), 3453-3470.
49. Liu, J., Yang, L., Kjellerup, B. V., & Xu, Z. (2023). Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends in Microbiology.
50. Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103-113.
51. Mahamuni-Badiger, P. P., Patil, P. M., Badiger, M. V., Patel, P. R., Thorat-Gadgil, B. S., Pandit, A., & Bohara, R. A. (2020). Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Materials Science and Engineering: C, 108, 110319.
52. Mahnashi, M. H., Muddapur, U. M., Turakani, B., Shaikh, I. A., Al Awadh, A. A., Alshahrani, M. M., ... & Shakeel Iqubal, S. M. (2022). A review on versatile eco-friendly applications of microbial proteases in biomedical and industrial applications. Science of Advanced Materials, 14(4), 622-637.
53. Małaczewska, J., & Kaczorek-Łukowska, E. (2021). Nisin—A lantibiotic with immunomodulatory properties: A review. Peptides, 137, 170479.
54. Mandal, A., & Ray Banerjee, E. (2020). Nanotechnology and functional food. Nanomaterials and Biomedicine: Therapeutic and Diagnostic Approach, 85-112.
55. MARINE, N. F. CHAPTER SEVEN PROMISING PERSPECTIVES FOR NANOTECHNOLOGY FROM MARINE MICROBIAL SOURCES AMUTHA SANTHANAM, B. CLARA GNANA. Microbial Biodiversity, 86.
56. Markande, A. R., Patel, D., & Varjani, S. (2021). A review on biosurfactants: properties, applications and current developments. Bioresource Technology, 330, 124963.
57. Michelin, M., Gomes, D. G., Romaní, A., Polizeli, M. D. L. T., & Teixeira, J. A. (2020). Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules, 25(15), 3411.
58. Michelin, M., Gomes, D. G., Romaní, A., Polizeli, M. D. L. T., & Teixeira, J. A. (2020). Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules, 25(15), 3411.
59. Migoń, D., Wasilewski, T., & Suchy, D. (2020). Application of QCM in peptide and protein-based drug product development. Molecules, 25(17), 3950.
60. Mohapatra, S., Yutao, L., Goh, S. G., Ng, C., Luhua, Y., Tran, N. H., & Gin, K. Y. H. (2023). Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. Journal of Hazardous Materials, 445, 130393.
61. Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules, 26(22), 7055.
62. Moye, Z. D., Das, C. R., Tokman, J. I., Fanelli, B., Karathia, H., Hasan, N. A., ... & Sulakvelidze, A. (2020). Treatment of fresh produce with a Salmonella‐targeted bacteriophage cocktail is compatible with chlorine or peracetic acid and more consistently preserves the microbial community on produce. Journal of food safety, 40(2), e12763.
63. Nag, M., Lahiri, D., Ghosh, A., Das, D., & Ray, R. R. (2021). Quorum sensing. Biofilm-mediated diseases: Causes and controls, 21-45.
64. Nisa, M., Dar, R. A., Fomda, B. A., & Nazir, R. (2023). Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control, 149, 109710.
65. Oudebrouckx, G., Vandenryt, T., Nivelle, P., Bormans, S., Wagner, P., & Thoelen, R. (2020). Introducing a thermal-based method for measuring dynamic thin film thickness in real time as a tool for sensing applications. IEEE Transactions on Instrumentation and Measurement, 70, 1-10.
66. Pattnaik, S., Mishra, M., & Naik, P. K. (2024). Alternative Strategies for Combating Antibiotic Resistance in Microorganisms. In Antimicrobial Photodynamic Therapy (pp. 65-109). CRC Press.
67. Poulin, M. B., & Kuperman, L. L. (2021). Regulation of biofilm exopolysaccharide production by cyclic di-guanosine monophosphate. Frontiers in Microbiology, 12, 730980.
68. Røder, H. L., Olsen, N. M., Whiteley, M., & Burmølle, M. (2020). Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environmental Microbiology, 22(1), 5-16.
69. Saboe, D. (2022). Monitoring Key Water Quality Parameters in Water Resources Systems Using Bioactive Electrodes(Doctoral dissertation, Arizona State University).
70. Salari, N., Rasoulpoor, S., Hosseinian-Far, A., Razazian, N., Mansouri, K., Mohammadi, M., ... & Shabani, S. (2021). Association between serum paraoxonase 1 activity and its polymorphisms with multiple sclerosis: a systematic review. Neurological Sciences, 42, 491-500.
71. Santana, M. F. D. S. E. D., & Pimentel Filho, N. D. J. (2023). Biofilmes de patógenos na indústria de alimentos: uma revisão sobre a sua formação e controle.
72. Seneviratne, C. J., Suriyanarayanan, T., Widyarman, A. S., Lee, L. S., Lau, M., Ching, J., ... & Ramage, G. (2020). Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Critical Reviews in Microbiology, 46(6), 759-778.
73. Shineh, G., Mobaraki, M., Perves Bappy, M. J., & Mills, D. K. (2023). Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation–A review. Applied Microbiology, 3(3), 629-665.
74. Shleeva, M. O., Kondratieva, D. A., & Kaprelyants, A. S. (2023). Bacillus licheniformis: a producer of antimicrobial substances, including Antimycobacterials, which are feasible for medical applications. Pharmaceutics, 15(7), 1893.
75. Singh, B. K. (2021). An overview of enzymes and their use in the detergent industry. Asian Journal of Research in Social Sciences and Humanities, 11(12), 71-76.
76. Sliem, M. H., Fayyad, E. M., Abdullah, A. M., Younan, N. A., Al-Qahtani, N., Nabhan, F. F., ... & Arora, D. (2021). Monitoring of under deposit corrosion for the oil and gas industry: a review. Journal of Petroleum Science and Engineering, 204, 108752.
77. Smith, P., & Schuster, M. (2022). Antiactivators prevent self-sensing in Pseudomonas aeruginosa quorum sensing. Proceedings of the National Academy of Sciences, 119(25), e2201242119.
78. Soleimani, M., Ghasemi, J. B., Ziarani, G. M., Karimi-Maleh, H., & Badiei, A. (2021). Photocatalytic degradation of organic pollutants, viral and bacterial pathogens using titania nanoparticles. Inorganic Chemistry Communications, 130, 108688.
79. Souza, G. M., de Oliveira Vieira, K. C., Naldi, L. V., Pereira, V. C., & Winkelstroter, L. K. (2021). Green synthesized nanoparticles as a promising strategy for controlling microbial biofilm. Nanotechnology for Advances in Medical Microbiology, 1-28.
80. Stearns, R., Freshour, A., & Shen, C. (2022). Literature review for applying peroxyacetic acid and/or hydrogen peroxide to control foodborne pathogens on food products. Journal of Agriculture and Food Research, 10, 100442.
81. Stine, J. M., Beardslee, L. A., Sathyam, R. M., Bentley, W. E., & Ghodssi, R. (2020). Electrochemical dissolved oxygen sensor-integrated platform for wireless in situ bioprocess monitoring. Sensors and Actuators B: Chemical, 320, 128381.
82. Tang, J., Wang, W., & Chu, W. (2020). Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed (Hizikia fusiforme). Frontiers in Cellular and Infection Microbiology, 10, 586750.
83. Thames, H. T., & Theradiyil Sukumaran, A. (2020). A review of Salmonella and Campylobacter in broiler meat: emerging challenges and food safety measures. Foods, 9(6), 776.
84. Tian, F., Li, J., Nazir, A., & Tong, Y. (2021). Bacteriophage–a promising alternative measure for bacterial biofilm control. Infection and Drug Resistance, 205-217.
85. Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods, 11(19), 3145.
86. Vengatesan, A. (2023). Evaluation of Photosensitizer Curcumin as a Surface Sanitizer on Food Contact Surface Typical of the Cold Smoked Fish Industry and as a Treatment Method for Reduction of Listeria monocytogenes Population in Cold Smoked Salmon (Doctoral dissertation, Rutgers The State University of New Jersey, School of Graduate Studies).
87. Verma, N., & Agarwal, V. (2022, December). A Review on Current Strategies for Biofilm Control in Food Industry. In conference BioSangam 2022: Emerging trends in Biotechnology (BIOSANGAM 2022) (pp. 123-132). Atlantis Press.
88. Viktorová, J., Stupák, M., Řehořová, K., Dobiasová, S., Hoang, L., Hajšlová, J., ... & Ruml, T. (2020). Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral—its dominant and strongly antimicrobial compound. Foods, 9(5), 585.
89. Visnapuu, A., Van der Gucht, M., Wagemans, J., & Lavigne, R. (2022). Deconstructing the phage–bacterial biofilm interaction as a basis to establish new antibiofilm strategies. Viruses, 14(5), 1057.
90. Wakui, K., Rosyidah, A. L., Maensiri, D., Taweeyanyongkul, K., & Nantapong, N. (2024). Degradation of Biofilm Formed by Opportunistic Pathogens using Amylase Extracted from Bacillus tequilensis. Brazilian Archives of Biology and Technology, 67, e24220200.
91. Wang, S., Zhao, Y., Breslawec, A. P., Liang, T., Deng, Z., Kuperman, L. L., & Yu, Q. (2023). Strategy to combat biofilms: a focus on biofilm dispersal enzymes. npj Biofilms and Microbiomes, 9(1), 63.
92. Xu, M. M., Kaur, M., Pillidge, C. J., & Torley, P. J. (2022). Microbial biopreservatives for controlling the spoilage of beef and lamb meat: Their application and effects on meat quality. Critical Reviews in Food Science and Nutrition, 62(17), 4571-4592.
93. Xue, B., Shen, Y., Zuo, J., Song, D., Fan, Q., Zhang, X., ... & Wang, Y. (2022). Bringing Antimicrobial Strategies to a New Level: The Quorum Sensing System as a Target to Control Streptococcus suis. Life, 12(12), 2006.
94. Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26(23), 7136.
95. Yepez, X. V., Misra, N. N., & Keener, K. M. (2020). Nonthermal plasma technology. Food safety engineering, 607-628.
96. Younis, A. B., Haddad, Y., Kosaristanova, L., & Smerkova, K. (2023). Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 15(3), e1860.
97. Yuan, L., Hansen, M. F., Røder, H. L., Wang, N., Burmølle, M., & He, G. (2020). Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Critical reviews in food science and nutrition, 60(13), 2277-2293.
98. Yuan, L., Sadiq, F. A., Wang, N., Yang, Z., & He, G. (2021). Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Critical reviews in food science and nutrition, 61(22), 3876-3891.
99. Yunus, J., Wan Dagang, W. R. Z., Jamaluddin, H., Jemon, K., Mohamad, S. E., & Jonet, M. A. (2024). Bacterial biofilm growth and perturbation by serine protease from Bacillus sp. Archives of microbiology, 206(4), 138.
100. Zhang, C., Wang, C., Zhao, S., & Xiu, Z. (2021). Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids. Biotechnology Letters, 43, 677-690.
101. Zhang, F., Wu, S., Dai, J., Huang, J., Zhang, J., Zhao, M., ... & Wu, Q. (2023). The emergence of novel macrolide resistance island in Macrococcus caseolyticus and Staphylococcus aureus of food origin. International Journal of Food Microbiology, 386, 110020.
102. Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in microbiology, 11, 589640.
103. Zhu, T., Yang, C., Bao, X., Chen, F., & Guo, X. (2022). Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 5(4), 179-186.
104. Ziyaina, M., & Rasco, B. (2021). Inactivation of microbes by ozone in the food industry: A review. African Journal of Food Science, 15(3), 113-120.

Downloads
Published
License
Copyright (c) 2024 Journal of Interdisciplinary Research in Allied Health and Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
cc BY