Forensic DNA phenotyping; Current updates and future prospects
Keywords:
Forensic DNA phenotyping, Externally visible characteristics, Genetic markers, Short tandem repeats, Single nucleotide polymorphisms, criminal identificationAbstract
Forensic DNA phenotyping refers to the prediction of externally visible characteristics such as hair, eye and skin color from the DNA source collected from the scene of crime. Unknown suspects can be traced with the help of this technique employing the ‘biological witness’. Traditional forensic methods exercise short tandem repeats (STRs) approaches to connect the offender with crime. However, proceedings of a forensic case may be delayed if there is a mismatch (anonymous offender) or lack of database hits, and it becomes arduous for a forensic lab to make the suspect pool narrower. A plenty of research has been done on alternative methods to apprehend the suspect. FDP deploying various powerful techniques for prediction of phenotype from the genotype has gained an excessive attention in past few years. Till now, many genetic markers have been identified and validated for skin color, hair color, eye color, facial features, age estimation etc. and many more to be added in the existing databases to make the effectualness of this technique more reliable. This review examines the current updates and future prospects of this project. Given the robustness of modern technologies, FDP has exceptional flair to meet the standards of forensic investigations and identifications
Key Words: Forensic DNA phenotyping (FDP), Externally visible characteristics (EVCs), Genetic markers, Short tandem repeats (STRs), Single nucleotide polymorphisms (SNPs), Suspect identification.
References
1. Wienroth M, Morling N, Williams R. Technological innovations in forensic genetics: social, legal and ethical aspects. Recent Advances in DNA & Gene Sequences (Formerly Recent Patents on DNA & Gene Sequences). 2014;8(2):98-103.
2. Valentine T, Fitzgerald RJ. Identifying the culprit: an international perspective on the National Academy of Sciences report on eyewitness identification evidence. Applied Cognitive Psychology. 2016;30(1):135-8.
3. Kayser M, De Knijff P. Improving human forensics through advances in genetics, genomics and molecular biology. Nature Reviews Genetics. 2011;12(3):179-92.
4. Chaitanya L, Breslin K, Zuñiga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics. 2018;35:123-35.
5. Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, et al. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Science International: Genetics. 2013;7(1):98-115.
6. Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M. IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information.
Forensic Science International: Genetics. 2011;5(3):170-80.
7. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187(2):367-83.
8. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics. 2013;14(7):507-15.
9. Mehta B, Daniel R, Phillips C, McNevin D. Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. International journal of legal medicine. 2017;131(1):21-37.
10. Sturm RA, Frudakis TN. Eye colour: portals into pigmentation genes and ancestry. TRENDS in Genetics. 2004;20(8):327-32.
11. Dembinski GM, Picard CJ. Evaluation of the IrisPlex DNA-based eye color prediction assay in a United States population. Forensic Science International: Genetics. 2014;9:111-7.
12. Al-Rashedi NA, Mandal AM, ALObaidi LA. Eye color prediction using the IrisPlex system: a limited pilot study in the Iraqi population. Egyptian Journal of Forensic Sciences. 2020;10(1):1-6.
13. Walsh S, Lindenbergh A, Zuniga SB, Sijen T, de Knijff P, Kayser M, et al. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Science International: Genetics. 2011;5(5):464-71.
14. Pietroni C, Andersen JD, Johansen P, Andersen MM, Harder S, Paulsen R, et al. The effect of gender on eye colour variation in European populations and an evaluation of the IrisPlex prediction model. Forensic Science International: Genetics. 2014;11:1-6.
15. Eiberg H, Troelsen J, Nielsen M, Mikkelsen A, Mengel-From J, Kjaer KW, et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Human genetics. 2008;123(2):177-87.
16. Hasan JM, Gaaib JN, Mahdi MG. HERC2 rs12913832 Association with Eye, Hair and Skin Color in The Iraqi Population. Scientific Journal of Medical Research. 2021;5(17):16-9.
17. Rahat MA, Khan H, Hassan I, Haris M, Israr M. DNA-based Eye Color Prediction of Pakhtun Population Living in District Swat KP Pakistan. Advancements in Life Sciences. 2020;7(3):157-63.
18. Frudakis T, Thomas M, Gaskin Z, Venkateswarlu K, Chandra KS, Ginjupalli S, et al. Sequences associated with human iris pigmentation. Genetics. 2003;165(4):2071-83.
19. Gerstenblith MR, Goldstein AM, Fargnoli MC, Peris K, Landi MT. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Human mutation. 2007;28(5):495-505.
20. Rees JL. Genetics of hair and skin color. Annual review of genetics. 2003;37(1):67-90.
21. Branicki W, Liu F, van Duijn K, Draus-Barini J, Pośpiech E, Walsh S, et al. Model-based prediction of human hair color using DNA variants. Human genetics. 2011;129(4):443-54.
22. Balanovska E, Lukianova E, Kagazezheva J, Maurer A, Leybova N, Agdzhoyan A, et al. Optimizing the genetic prediction of the eye and hair color for North Eurasian populations. BMC genomics. 2020;21(7):1-13.
23. Maroñas O, Phillips C, Söchtig J, Gomez-Tato A, Cruz R, Alvarez-Dios J, et al. Development of a forensic skin colour predictive test. Forensic Science International: Genetics. 2014;13:34-44.
24. Jablonski NG, Chaplin G. The colours of humanity: the evolution of pigmentation in the human lineage. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372(1724):20160349.
25. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature genetics. 2007;39(12):1443-52.
26. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4(5):e1000074.
27. Stokowski RP, Pant PK, Dadd T, Fereday A, Hinds DA, Jarman C, et al. A genomewide association study of skin pigmentation in a South
Asian population. The American Journal of Human Genetics. 2007;81(6):1119-32.
28. Spichenok O, Budimlija ZM, Mitchell AA, Jenny A, Kovacevic L, Marjanovic D, et al. Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Science International: Genetics. 2011;5(5):472-8.
29. Pneuman A, Budimlija ZM, Caragine T, Prinz M, Wurmbach E. Verification of eye and skin color predictors in various populations. Legal Medicine. 2012;14(2):78-83.
30. Hart KL, Kimura SL, Mushailov V, Budimlija ZM, Prinz M, Wurmbach E. Improved eye-and skin-color prediction based on 8 SNPs. Croatian medical journal. 2013;54(3):248-56.
31. Liu F, Visser M, Duffy DL, Hysi PG, Jacobs LC, Lao O, et al. Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up. Human genetics. 2015;134(8):823-35.
32. Nan H, Kraft P, Qureshi AA, Guo Q, Chen C, Hankinson SE, et al. Genome-wide association study of tanning phenotype in a population of European ancestry. Journal of Investigative Dermatology. 2009;129(9):2250-7.
33. Graf J, Voisey J, Hughes I, Van Daal A. Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation. Human mutation. 2007;28(7):710-7.
34. Valenzuela RK, Henderson MS, Walsh MH, Garrison NA, Kelch JT, Cohen‐Barak O, et al. Predicting phenotype from genotype: normal pigmentation. Journal of forensic sciences. 2010;55(2):315-22.
35. Duffy DL, Box NF, Chen W, Palmer JS, Montgomery GW, James MR, et al. Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Human molecular genetics. 2004;13(4):447-61.
36. Lao O, De Gruijter J, van Duijn K, Navarro A, Kayser M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Annals of human genetics. 2007;71(3):354-69.
37. Norton HL, Kittles RA, Parra E, McKeigue P, Mao X, Cheng K, et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Molecular biology and evolution. 2007;24(3):710-22.
38. Soejima M, Koda Y. Population differences of two coding SNPs in pigmentation-related genes SLC24A5 and SLC45A2. International journal of legal medicine. 2007;121(1):36-9.
39. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Jakobsdottir M, et al. Two newly identified genetic determinants of pigmentation in Europeans. Nature genetics. 2008;40(7):835-7.
40. Brown KM, MacGregor S, Montgomery GW, Craig DW, Zhao ZZ, Iyadurai K, et al. Common sequence variants on 20q11. 22 confer melanoma susceptibility. Nature genetics. 2008;40(7):838-40.
41. Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T, Sigurgeirsson B, et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nature genetics. 2008;40(7):886-91.
42. Pośpiech E, Wojas-Pelc A, Walsh S, Liu F, Maeda H, Ishikawa T, et al. The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction. Forensic Science International: Genetics. 2014;11:64-72.
43. Kanetsky PA, Swoyer J, Panossian S, Holmes R, Guerry D, Rebbeck TR. A polymorphism in the agouti signaling protein gene is associated with human pigmentation. The American Journal of Human Genetics. 2002;70(3):770-5.
44. Eriksson N, Macpherson JM, Tung JY, Hon LS, Naughton B, Saxonov S, et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 2010;6(6):e1000993.
45. Chabris CF, Lee JJ, Benjamin DJ, Beauchamp JP, Glaeser EL, Borst G, et al. Why it is hard to find genes associated with social science traits: Theoretical and empirical considerations. American journal of public health. 2013;103(S1):S152-S66.
46. Mengel-From J, Wong TH, Morling N, Rees JL, Jackson IJ. Genetic determinants of hair and eye colours in the Scottish and Danish populations. BMC genetics. 2009;10(1):1-13.
47. Sturm RA, Duffy DL. Human pigmentation genes under environmental selection. Genome biology. 2012;13(9):1-15.
48. Aulchenko YS, Struchalin MV, Belonogova NM, Axenovich TI, Weedon MN, Hofman A, et al. Predicting human height by Victorian and genomic methods. European Journal of Human Genetics. 2009;17(8):1070-5.
49. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in∼ 700000 individuals of European ancestry. Human molecular genetics. 2018;27(20):3641-9.
50. Liu F, Hendriks AEJ, Ralf A, Boot AM, Benyi E, Sävendahl L, et al. Common DNA variants predict tall stature in Europeans. Human genetics. 2014;133(5):587-97.
51. Argente J. Challenges in the management of short stature. Hormone research in paediatrics. 2016;85(1):2-10.
52. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, et al. The problem of aging human remains and living individuals: a review. Forensic science international. 2009;193(1-3):1-13.
53. Márquez-Ruiz AB, González-Herrera L, Valenzuela A. Usefulness of telomere length in DNA from human teeth for age estimation. International journal of legal medicine. 2018;132(2):353-9.
54. Maulani C, Auerkari EI. Age estimation using DNA methylation technique in forensics: a systematic review. Egyptian Journal of Forensic Sciences. 2020;10(1):1-15.
55. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging cell. 2015;14(6):924-32.
56. Freire-Aradas A, Phillips C, Lareu M. Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic science review. 2017;29(2).
57. Bekaert B, Kamalandua A, Zapico SC, Van de Voorde W, Decorte R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015;10(10):922-30.
58. Dias HC, Cordeiro C, Pereira J, Pinto C, Real FC, Cunha E, et al. DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay. Forensic science international. 2020;311:110267.
59. Spólnicka M, Pośpiech E, Pepłońska B, Zbieć-Piekarska R, Makowska Ż, Pięta A, et al. DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. International journal of legal medicine. 2018;132(1):1-11.
60. Eipel M, Mayer F, Arent T, Ferreira MR, Birkhofer C, Gerstenmaier U, et al. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging (Albany NY). 2016;8(5):1034.
61. Márquez-Ruiz AB, González-Herrera L, de Dios Luna J, Valenzuela A. DNA methylation levels and telomere length in human teeth: usefulness for age estimation. International journal of legal medicine. 2020;134(2):451-9.
62. Dias HC, Cunha E, Real FC, Manco L. Age prediction in living: Forensic epigenetic age estimation based on blood samples. Legal Medicine. 2020;47:101763.
63. Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A. Facial genetics: a brief overview. Frontiers in genetics. 2018;9:462.
64. Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nature genetics. 2018;50(3):414-23.
65. Claes P, Liberton DK, Daniels K, Rosana KM, Quillen EE, Pearson LN, et al. Modeling 3D facial shape from DNA. PLoS Genet. 2014;10(3):e1004224.
66. Claes P, Hill H, Shriver MD. Toward DNA-based facial composites: preliminary results and validation. Forensic Science International: Genetics. 2014;13:208-16.
67. Machado H, Silva S. What influences public views on forensic DNA testing in the criminal field? A scoping review of quantitative evidence. Human genomics. 2019;13(1):1-13.
68. Kayser M. Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics. 2015;18:33-48.
69. Slabbert N, Heathfield LJ. Ethical, legal and social implications of forensic molecular phenotyping in South Africa. Developing world bioethics. 2018;18(2):171-81.
70. Samuel G, Prainsack B. Forensic DNA phenotyping in Europe: views “on the ground” from those who have a professional stake in the technology. New Genetics and Society. 2019;38(2):119-41.
Downloads
Published
License
Copyright (c) 2025 Journal of Interdisciplinary Research in Allied Health and Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
cc BY

